首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

10.
11.
12.
13.
Signals of translation initiation of operons of Haemophilus influenzae ribosomal proteins were predicted. This process is regulated by the formation of secondary RNA structures to which one of the proteins encoded in a particular operon binds. In some cases, these structures imitate the region of protein binding to rRNA. Predictions are made by comparing with homologous operons of Escherichia coli and analogous regions of rRNA and by estimating the energy of secondary structure formation. It is shown that this regulatory mechanism occurs: in operons L11, S10, S15, spc, and alpha of H.influenzae and, probably, in operon S15 of Helicobacter pylori, Bacillus subtilis, and Mycoplasma genitalium.  相似文献   

14.
15.
We have proposed a rapid phylogenetic classification at the strain level by MALDI-TOF MS using ribosomal protein matching profiling. In this study, the S10-spc-alpha operon, encoding half of the ribosomal subunit proteins and highly conserved in eubacterial genomes, was selected for construction of the ribosomal protein database as biomarkers for bacterial identification by MALDI-TOF MS analysis to establish a more reliable phylogenetic classification. Our method revealed that the 14 reliable and reproducible ribosomal subunit proteins with less than m/z 15,000, except for L14, coded in the S10-spc-alpha operon were significantly useful biomarkers for bacterial classification at species and strain levels by MALDI-TOF MS analysis of genus Pseudomonas strains. The obtained phylogenetic tree was consisted with that based on genetic sequence (gyrB). Since S10-spc-alpha operons of genus Pseudomonas strains were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains, the ribosomal subunit proteins encoded in S10-spc-alpha operon were suitable biomarkers for construction and correction of the database. MALDI-TOF MS analysis using these 14 selected ribosomal proteins is a rapid, efficient, and versatile bacterial identification method with the validation procedure for the obtained results.  相似文献   

16.
Protein L4 of the E. coli ribosome regulates an eleven gene r protein operon   总被引:32,自引:0,他引:32  
J M Zengel  D Mueckl  L Lindahl 《Cell》1980,21(2):523-535
We have previously reported autogenous regulation of the S10 operon encoding eleven ribosomal proteins. By measuring the synthesis of individual r proteins after specific oversynthesis of nine different ribosomal proteins from the S10 operon, we now find that one, L4, affects the expression of the operon. Moreover, the induction of L4 synthesis results in a strong reduction of the synthesis of mRNA from at least four genes of the S10 operon.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号