首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new mutant strain,Aspergillus niger GS-III, showing resistance to manganese ions inhibition of citric acid fermentation on a sugarcane molasses containing medium was induced fromAspergillus niger KCU 520, a high citric acid-yielding strain. In submerged, surface or continuous cultures in the presence of manganese ions concentration upto 1.5 ppm the mutant strain yielded citric acid about 90 KgM–3 . The citric acid yield was comparable to that obtained with the parental strain KCU 520 in the absence of manganese ions, but it was atleast 3-fold higher than that obtained by the latter in the presence of manganese ions. The mutant strain immobilized in calcium alginate beads was used in combination with surface-stabilized cultures for about 36-days in a continuous flow horizontal fermenter without any apparent loss in citric acid productivity. These results indicate that the manganese-resistant mutant is stable and may be used in the presence of sufficient manganese ions concentration (1.5 ppm) in the fermentation medium. This capability of the mutant strainA. niger GS-III has been correlated with greatly reduced levels (about one-thirds) of the NADP+ -isocitric dehydrogenase, one of the control points for citric acid accumulation.  相似文献   

2.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

3.
Summary Determinations of the momentary levels of various intermediates related to the activity of the tricarboxylic acid cycle have been made during citric acid production in high-accumulating (manganese deficient) and lowaccumulating (manganese supplemented) mycelia of Aspergillus niger. During the growth period the levels of almost all TCA cycle acids, with the exception of 2-oxo-acids, were unusually high; during the induction phase of citrate accumulation malate, fumarate, and isocitrate decreased, whereas pyruvate, oxalacetate, and citrate increased. The presence of succinate could not be demonstrated. The interrelations of the momentary concentrations of the intermediates mainly demonstrate a lack in activity of 2-oxoglutarate dehydrogenase, representing a block in the TCA cycle concomitant with a strongly operating glycolysis as a prerequisite for citrate accumulation. Inhibition studies with crude enzyme preparations suggest that an inhibition of malate dehydrogenase by citrate and also inhibition of isocitrate dehydrogenase by citrate and 2-oxoglutarate occur during the production phase as additional factors.  相似文献   

4.
Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Q s (g per L per h) and specific substrate consumption rate,q s (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Y p/x), volume productivity (Q p) and specific product yields (q p), the mutant strain is significantly (p≤0.05) improved over the parental strain.  相似文献   

5.
The mitochondrial citrate transport protein (CTP) functions as a malate–citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.  相似文献   

6.
Summary Growth, citric acid production and enzymatic activity of the mitochondrial respiratory enzymes of a wild-type and a citric-acid-producing mutant of Aspergillus niger have been compared during fermentation under citric-acid-accumulating and non-accumulating conditions. Under non-accumulating conditions, both strains showed standard growth and no citric acid production. The mutant strain was characterized by delayed onset of growth and lowered cell yield. Under citric-acid-accumulating conditions the wild-type strain exhibited decelerated growth and a maximal citric acid concentration of 12 g l–1. Reduced, but continuing growth and citric acid production of 32 g l–1 was observed for the mutant strain. In general, the mutant strain exhibited reduced activity for the proton-pumping respiratory complexes and enhanced activity for the alternative respiratory enzymes. In contrast to the stable activity of complex I in the wild-type strain, this complex was selectively lost in the mutant strain at the onset of citric acid production, while the alternative NADH dehydrogenases were kept at enhanced and constant activity. A possible causal connection between the loss of complex I and citric acid accumulation is discussed. Offsprint requests to: J. Wallrath  相似文献   

7.
Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.  相似文献   

8.
A citric-acid-producing Aspergillus niger strain was cultivated in conditions favouring citric acid biosynthesis and in conditions hindering it. During both extreme processes, the mycelia were analysed for their lipid content, individual lipid classes, the content of sterols and free fatty acids. Since phospholipids, especially phosphatidylcholine and sterols, play an essential role in membrane permeability one can conclude that the differences observed substantially contribute to citric acid excretion into fermentation media. The difference in sterol composition was the most pronounced. Citric-acid-excreting mycelia contained lower quantities of sterols and ergosterol was the only component. A. niger mycelia grown in conditions hindering citric acid accumulation contained higher amounts of sterols with ergosterol as the main component and six other sterol components representing a minor amount.Offprint requests to: K. Jernejc  相似文献   

9.
Summary Under otherwise identical fermentation conditions, the sugar source has been shown to have a marked effect on citric acid production by Aspergillus niger. Sucrose was the most favourable source, followed by glucose and fructose and then lactose. No citric acid was produced from galactose. Strong relationships were observed between citric acid production and the activities of certain enzymes in myccelial cell-free extracts prepared from fermentation samples. When sucrose, glucose, or fructose was the sugar source pyruvate carboxylase activity was high, but 2-oxoglutarate dehydrogenase activity was not detected. When galactose was the sugar source pyruvate carboxylase activity was low, but 2-oxoglutarate dehydrogenase activity was high. It is suggested that whereas glucose and fructose repress 2-oxoglutarate dehydrogenase, thereby causing accumulation of citric acid, galactose does not. The activity of aconitase showed a direct relationship to the citric acid production rate. Thus, the activity was highest when sucrose was the sugar source, and lowest when galactose was the source. It is suggested that when large amounts of citric acid are lost from the cell the activity of aconitase increases as a response to the diminished intracellular supply of its substrate.  相似文献   

10.
Yarrowia lipolytica strain IMK 2, a yeast capable of producing and excreting citric acid, only accumulated citric acid when cell growth was restricted by specific nutrient limitations. Effective citrate accumulation was linked with the ability of cells to maintain a high rate of glucose utilisation when growth was limited. Cells limited by nitrogen (N), sulphur (S), magnesium (Mg) or phosphorus (P) accumulated between 50 and 220 mm citric acid after 168 h, with N and S limitation resulting in the highest specific rates of production. In contrast, potassium (K)-limited cells accumulated 6 mm citric acid in the same time period. Cells limited by K or lower levels of Mg or P had rates of glucose utilisation that were less than 50% of those measured in cells limited by N or S. Although limitation of strain IMK 2 by Mg or P led to citrate production, significant accumulation occured only when the threshold concentration of the limiting nutrient was exceeded. There was no large accumulation of other tricarboxylic acid (TCA) cycle acids, acetate, pyruvate, lactate or ethanol, although K-limited cells produced quantities of intracellular glycogen. Mannitol was accumulated under N, S and P limitation (up to 40 mm), as were small quantities of 2-oxoglutarate, which preceded the accumulation of citrate and all of the other TCA cycle acids measured. A clear difference was evident between the rates of glucose utilisation under N limitation between two citrate-accumulating strains (IMK 2 and Candida guilliermondii IMK 1) and a citrate non-accumulating strain, Y. lipolytica YB 423. Although these strains had similar rates of glucose utilisation during exponential growth, both strains IMK 1 and IMK 2 had specific rates of glucose utilisation under N limitation more than double that of strain YB 423.Correspondence to: J. D. Brooks 2  相似文献   

11.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

12.
The filamentous fungusAspergillus niger accumulates large levels of citric acid in the medium when grown under conditions favouring a high rate of sugar catabolism. With the aim of understanding the mechanisms involved in this process we investigated glucose transport in this fungus. To this end a medium was designed that enables growth of the fungus into a fine, hairy filamentous mycelium, suitable for transport studies. It was found thatA. niger contains a single, high-affinity glucose transporter when grown on a low (1% w/v) glucose concentration, but forms an additional low-affinity transporter when grown on a high (15% w/v) glucose concentration. Both glucose transporters exhibit decreased activities at low pH and are inhibited by citric acid. However, the activity of the low-affinity transporter is much less affected by these conditions. Two 2-deoxyglucose-resistant (dgr) mutants ofA. niger, which produce citric acid at a much lower rate than the parent strain, are impaired in the formation of the low-affinity transporter, but form the high-affinity transporter with higher activities. We conclude that the low-affinity glucose transporter takes part in the mechanism by whichA. niger responds to high extracellular glucose concentrations leading to citric acid accumulation.  相似文献   

13.
Mutants with enhanced citric acid production from soluble starch were induced from Aspergillus niger WU-2223L. After UV-irradiation of a conidial suspension of strain WU-2223L, mutants were selected on modified starch-methyl red agar plates on the basis of higher amylolytic activity and acid productivity. The 8 mutants selected showed enhanced citric acid production from soluble starch in shaking culture. Among them, a representative mutant strain, 2M-43, produced 48.0gg/l of citric acid from 120 g/l of soluble starch in 9 d of cultivation in shaking culture, whereas strain WU-2223L produced 35.1 g/l. Glucoamylase activities in the culture filtrates of strains 2M-43 and WU-2223L reached maximum levels of 3.62 U/ml and 2.11 U/ml, respectively, both at 3 d of cultivation, and thereafter decreased.  相似文献   

14.
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.  相似文献   

15.
The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.  相似文献   

16.
Summary Quantitative balances have been made for sugar and oxygen uptake rates during citric acid accumulation by Aspergillus niger: during the first phase of citric acid accumulation (up to 130 h) more sugar is taken up than the production of biomass, CO2 and citric acid account for. In contrast, during later phases of fermentation more citric acid, CO2 and biomass are formed than sugar uptake would theoretically allow. A similar pattern is obtained for oxygen uptake, where less uptake occurs during the early phase of fermentation than needed for complete balance, and the reverse is observed during the late stage of fermentation. It could subsequently be shown that this is caused by the intermediate accumulation and partial re-consumption of a number of polyhydric alcohols (glycerol, arabitol, erythritol and mannitol) during citric acid fermentation.Dedicated to Professor H. J. Rehm on the occasion of his 60th birthday with kind regards  相似文献   

17.
Summary Many mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glycerol as a carbon source were induced from Aspergillus niger WU-2223L, a citric acid-producing strain. The mutant strains were classifiable into two types according to their growth characteristics. On the agar plates containing glucose as a sole carbon source, mutant strains of the first type showed good growth irrespective of the presence or absence of DG. When cultivated in shake cultures, some strains of the first type, such as DGR1–2, showed faster glucose consumption and growth than strain WU-2223L. The period for citric acid production shortened from 9 days for strain WU-2223L to 6–7 days for these mutant strains. The levels and yields of citric acid production of the mutant strains were almost the same as those of strain WU-2223L. The mutant strains of the second type, however, showed very slow or no growth on both the agar plates containing glucose and fructose as sole carbon sources. In shake cultures, mutant strains such as DGR2-8 showed decreased glucose consumption rates, resulting in very low production of citric acid.  相似文献   

18.
Several tens of mutants were obtained by UV irradiation of a spore suspension ofAspergillus niger. Producers yielding large amounts of citric acid were selected on a moditied Czapek agar containing methyl red as pH indicator. After a submerged cultivation in flasks with baffles, a mutant characterized by yellow pigmentation on wort agar and by yields of citric acid up to 74.6% in the medium containing glucose was chosen from 130 isolates tested.  相似文献   

19.
A considerable lowering of aeration demands occurs during diffuse growth of citric acid-producingAspergillus niger in a submerged cultivation. However, the diffuse culture poses stricter demands on the type of aeration and agitation. The impeller frequency affects considerably the morphology of the producer fungus and the accumulation of citric acid. The effect of impeller frequency on the distribution of air in the medium and on the amount of air fed into the diffuse culture is less important.  相似文献   

20.
A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号