首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

2.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

3.
Aristolochic acid and PGBx, two structurally unrelated, protein-targeted inhibitors of isolated phospholipases A2, are effective antagonists of calcium ionophore A23187-stimulated mobilization of [3H]arachidonate from human neutrophils. We now report that preincubation of neutrophils with oleoylacetylglycerol (OAG, 15 microM) substantially reverses the inhibitory effect of 200 microM aristolochic acid (from 70 to 24% inhibition). Similarly, OAG increases the IC50 for PGBx from 2.5 to greater than 20 microM. The effects of OAG on inhibition by either aristolochic acid or PGBx are dose-dependent, with an ED50 of 2.5 microM. Protection against inhibition by either aristolochic acid or PGBx is also observed with phorbol myristate acetate (PMA, ED50 3 nM), but not 4-alpha-phorbol didecanoate. Aristolochic acid and PGBx do not inhibit PMA-stimulated superoxide generation, and are thus not protein kinase C inhibitors. Furthermore, neither aristolochic acid nor PGBx inhibit diglyceride generation through the phospholipase D/phosphatidate phosphohydrolase pathway. A23187-stimulated [3H]arachidonate mobilization is increased by 20-50% when neutrophils are preincubated with OAG or PMA. The present results indicate that OAG and PMA also modulate the A23187-stimulated [3H]arachidonate mobilization so as to render it less sensitive to inhibitors of phospholipase A2.  相似文献   

4.
The calcium ionophore, A23187, and the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), interacted synergistically to elicit an accelerated superoxide production response in human neutrophils. The lag period preceding PMA-induced superoxide generation was decreased in a dose-dependent manner by A23187 at a concentration range from 1.0 X 10(-8) to 1.0 X 10(-5) M. Superoxide production rate, however, was subject to biphasic effects. While the rate was potentiated in a dose-dependent manner at A23187 concentrations below 1.0 X 10(-6) M, inhibitory influences became manifest at higher concentrations. Total superoxide production was subject to inhibitory effects, characterized by a mean inhibitory dose of 1.3 X 10(-6) M. The synergistic interaction of A23187 with PMA is consistent with a role for protein kinase C in neutrophil activation. Inhibition at high A23187 concentrations appeared to result from the effects of elevated intracellular Ca2+ levels on either NADPH oxidase itself, or some step in the transduction process linking protein kinase C to the oxidase complex.  相似文献   

5.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6μM). In the presence of the calcium antagonists TMB-8 (0.43μM). or verapamil (0.2μM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

6.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

7.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

8.
Stimulation of human polymorphonuclear leukocytes (PMN) may result in the metabolism of phospholipids other than phosphoinositides to generate second-messenger intermediary metabolites. We investigated agonist-induced breakdown of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC), which constitutes almost half the diradyl-GPC fraction in human PMN (Mueller, H. W., O'Flaherty, J. T., Green, D. G., Samuel, M. P., and Wykle, R. L. (1984) J. Lipid Res. 25: 383-388), in cells prelabeled with 1-O-[3H] alkyl-2-acyl-GPC. We also utilized normal-phase high pressure liquid chromatography to quantitate the accumulation of diradylglycerols (1-O-alkyl-2-acylglycerols and diacylglycerols) in stimulated PMN. Phorbol-12-myristate-13-acetate (PMA), 1-oleoyl-2-acetyl-sn-glycerol-, calcium ionophore A23187-, and f-methionyl-leucyl-phenylalanine (fMLP) stimulation of PMN resulted in a time- and concentration-dependent hydrolysis of 1-O-[3H]alkyl-2-acyl-GPC and the formation of 1-O-[3H]alkyl-2-acyl-phosphatidic acid (PA) and 1-O-[3H]alkyl-2-acylglycerol. In all cases formation of 1-O-[3H]alkyl-2-acyl-PA preceded that of 1-O-[3H]alkyl-2-acylglycerol. The times between addition of stimulus and appearance of 1-O-[3H] alkyl-2-acylglycerol varied for PMA (40 s at 1.6 microM), A23187 (5 min at 5 microM), and fMLP (30 sec at 1 microM). Preincubation of cells with 1 microgram/ml pertussis toxin (PT) inhibited the breakdown of 1-O-[3H]alkyl-2-acyl-GPC in cells stimulated with 1 microM fMLP, indicating a role for a PT-sensitive G protein with this stimulus. Quantitation of diglycerides as diradylglycerobenzoates in PMN stimulated with PMA (10 min), A23187 (10 min), or fMLP demonstrated marked accumulation of both 1-O-alkyl-2-acylglycerols and diacylglycerols. The highest increases over controls were observed for fMLP (33-fold for 1-O-alkyl-2-acylglycerols and 17-fold for diacylglycerols). In stimulated PMN prelabeled with 1-O-[3H]hexadecyl-2-acyl-GPC and 1-O-alkyl-2-acyl-sn-glycero-3-[32P]phosphocholine, the ratio of 3H to 32P in 1-O-alkyl-2-acyl-PA compared to 1-O-alkyl-2-acyl-GPC suggested the involvement of a phospholipase D in the hydrolysis of 1-O-[3H]-alkyl-2-acyl-GPC. Thus, stimulation of human PMN results in the hydrolysis of 1-O-[3H]alkyl-2-acyl-GPC to yield 1-O-[3H] alkyl-2-acyl-PA and 1-O-[3H]alkyl-2-acylglycerol possibly initiated by activation of a phospholipase D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The presence of a phospholipase A2 (PLA2) activity in rabbit neutrophil membrane preparation that is able to release [1-14C]oleic acid from labelled Escherichia coli has been demonstrated. The activity is critically dependent on the free calcium concentration and marginally stimulated by GTP gamma S. More than 80% of maximal activity is reached at 10 microM-Ca2+. The chemotactic factor, fMet-Leu-Phe, does not stimulate the PLA2 activity in this membrane preparation. Pretreatment of the membrane preparation, under various experimental conditions, or intact cells, before isolation of the membrane with phorbol 12-myristate 13-acetate (PMA), does not affect PLA2 activity. Addition of the catalytic unit of cyclic AMP-dependent kinase to membrane preparation has no effect on PLA2 activity. Pretreatment of the intact neutrophil with dibutyryl-cAMP before isolation of the membrane produces a small but consistent increase in PLA2 activity. The activity of PLA2 in membrane isolated from cells treated with the protein kinase inhibitor 1-(5-isoquinolinesulphonyl)-2-methyl piperazine dihydrochloride (H-7) is significantly decreased. Furthermore, although the addition of PMA to intact rabbit neutrophils has no effect on the release of [3H]arachidonic acid from prelabelled cells, it potentiates significantly the release produced by the calcium ionophore A23187. This potentiation is not due to an inhibition of the acyltransferase activity. H-7 inhibits the basal release of arachidonic acid but does not inhibit the potentiation by PMA. These results suggest several points. (1) fMet-Leu-Phe does not stimulate PLA2 directly, and its ability to release arachidonic acid in intact neutrophils is mediated through its action on phospholipase C. (2) The potentiating effect of PMA on A23187-induced arachidonic acid release is most likely due to PMA affecting either the environment of PLA2 and/or altering the organization of membrane phospholipids in such a way as to increase their susceptibility to hydrolysis. (3) The intracellular level of cyclic AMP probably does not directly affect the activity of PLA2.  相似文献   

10.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6 microM). In the presence of the calcium antagonists TMB-8 (0.43 microM) or verapamil (0.2 microM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

11.
Adenosine potentiates preformed mediator release from mouse bone marrow-derived mast cells stimulated with specific Ag or the calcium ionophore A23187. When these mast cells were cultured for 30 to 120 min with the phorbol ester PMA (10(-8) or 10(-7) M), protein kinase C activity was increased and Ag-stimulated beta-hexosaminidase release was modestly inhibited, whereas A23187-stimulated release was synergistically enhanced. However, in both cases, exogenous adenosine failed to augment beta-hexosaminidase release. Overnight PMA exposure produced a decrease in protein kinase C activity and a decrease in both Ag- and A23187-stimulated preformed mediator release, as well as a lack of responsiveness to adenosine. This hyporesponsiveness could be reversed by 24 h after washing the cells free of PMA. The generation of the arachidonic acid metabolite leukotriene C4 was not altered by mast cell PMA exposure. The ability of adenosine to increase intracellular cAMP concentrations was modestly blunted by high doses of PMA, and PMA abrogated the increase in intracellular free calcium levels usually observed in cells stimulated with Ag in the presence of 10(-5) M adenosine. PMA exposure induces a hyporesponsiveness to adenosine in mast cells, either by a direct effect on protein kinase C activity and/or by an effect on adenosine receptor expression or recycling.  相似文献   

12.
The tumor-promoting phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), which activates protein kinase C, acted synergistically with A23187 to decrease muscarinic acetylcholine receptor (mAChR) number in neuroblastoma cells (clone N1E-115) as determined by a filter binding assay using [3H]quinuclidinyl benzilate in membrane homogenates. After a 6-h incubation, 10(-7) M PMA and 3 X 10(-7) M A23187 reduced mAChR number 30-40%, compared to the 40-50% reduction observed after treatment with 10(-3) M carbachol, a muscarinic agonist. Incubation with 3 X 10(-7) M A23187 and 10(-7) M 4 alpha-phorbol 12,13-didecanoate, an inactive phorbol ester, did not alter mAChR number. The addition of PMA and A23187 to cultures incubated with 10(-3) M carbachol caused only a modest 6% further reduction in mAChR number as compared to incubation with carbachol alone. The kinetics of the decrease in mAChR number produced by PMA/A23187 were similar to those seen after carbachol treatment. Recovery of mAChR number after treatment with either carbachol or PMA/A23187 was blocked by treatment with the protein synthesis inhibitor cycloheximide. Intact cell binding studies employing [3H]N-methylscopolamine showed that treatment with either PMA/A23187 or carbachol caused a rapid (within 15 min) loss of receptors from the cell surface prior to the decrease in total mAChR number. PMA (10(-7) M), but not 4 alpha-phorbol 12,13-didecanoate, promoted the translocation of protein kinase C activity from the cytosol to the membrane. Incubation with carbachol increased membrane-associated protein kinase C activity within 5 min with an EC50 of 3 X 10(-6) M. This increase persisted for at least 60 min in the continued presence of carbachol and was blocked by simultaneous incubation with atropine. These results suggest that activation of protein kinase C may be involved in the regulation of mAChR number in response to agonist.  相似文献   

13.
Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction.  相似文献   

14.
Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E2 production by the cells in dose related fashion. PMA stimulated prostaglandin E2 production over fifty-fold with the dose of 10(-7) M compared with control. EGF (10(-7) M) also stimulated it about ten-fold. The ED50 values of PMA and EGF were respectively around 1 X 10(-9) M and 5 X 10(-10) M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E2 production from 1 to 24-h incubation. The release of radioactivity from [3H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells.  相似文献   

15.
The addition of the Ca2+ ionophore A23187 to rabbit neutrophils stimulated [14C]arachidonic acid incorporation into phosphatidylinositol and lysosomal enzyme secretion. A significant increase in phosphatidylinositol labelling was observed after a 2 min exposure to 0.1 microM-ionophore A23187. Maximum increases in rate of labelling were obtained with 1 microM-ionophore A23187 within 1 min, declining to basal rates after 15 min. Similarly, maximum rate of enzyme release occurred during the first 2 min of exposure to ionophore and release was essentially complete by 15 min. Threshold and peak ionophore A23187 concentrations for stimulating both processes were identical. In contrast with the specificity of phosphatidylinositol labelling induced by 1 microM-ionophore A23187 in the absence of cytochalasin B, ionophore also significantly stimulated labelling of phosphatidylserine and phosphatidylethanolamine in the presence of cytochalasin B. With a threshold ionophore concentration (0.1 microM), the enhanced incorporation of arachidonate was relatively specific for phosphatidylinositol in cytochalasin-treated cells. Ionophore A23187 did not accelerate labelling of phosphatidylinositol by [14C]acetate or [14C]glycerol, indicating that ionophore A23187 does not stimulate phosphatidylinositol synthesis de novo, although it did promote [14C]palmitate and [32P]Pi incorporation into neutrophil phosphatidylinositol. However, the increase in phosphatidylinositol labelling with these latter precursors was generally slower in onset and much more modest in magnitude than that observed with arachidonic acid. These results support the hypothesis that a Ca2+-dependent phospholipase, which acts on the arachidonate moiety of phosphatidylinositol, is responsible for initiating at least certain of the membrane events coupled to the release of secretory product from the neutrophil.  相似文献   

16.
Ionophore A23187, either in the presence or absence of added Ca2+ or Mg2+, caused a marked accumulation of [32P]-phosphatidic acid in pancreatic islets pre-labelled with 32 Pi. A similar effect was observed following the addition of 4 mM Ba2+ ions in the absence of added Ca2+. Neither agent caused a significant modification of labelling in other lipid fractions, although there was a persistent trend towards reduced labelling of phosphatidylcholine and phosphatidylethanolamine. Ionophore A23187 also potentiated the incorporation of 3H-glycerol into phosphatidic acid and reduced the incorporation of this precursor into phosphatidylcholine. In islets pre-labelled with 3H-glycerol and subsequently exposed to A23187 or Ba2+, no significant changes were observed in label associated with either phospholipids or neutral glycerolipids. These results suggest that ionophore A23187 and Ba2+ ions can divert the synthesis of phospholipids resulting in increased formation of phosphatidic acid at the expense of non-acidic phospholipids, principally phosphatidylcholine. We tentatively suggest that this effect may be the result of inhibition by Ca2+ of the breakdown of phosphatidic acid to diglyceride, an enzymic step which may regulate the relative amounts of acidic and neutral phospholipids.  相似文献   

17.
Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism.  相似文献   

18.
In neuroblastoma × glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP, was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10–30 s of stimulation with 10−6 M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not allow the time-course for PIP2 hydrolysis. A reduced labelling of [23P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.  相似文献   

19.
Treatment of rabbit neutrophils with pertussis toxin, but not cholera toxin, inhibits the increases produced by formylmethionyl-leucyl-phenylalanine, leukotriene B4 and the calcium ionophore A23187 in the amounts of actin associated with the cytoskeletons. The increase in the cytoskeletal actin produced by phorbol 12-myristate, 13-acetate on the other hand is not affected by pertussis toxin. Incubation of the neutrophils with cholera toxin, unlike pertussis toxin, did not inhibit the fMet-Leu-Phe induced rise in the intracellular concentration of free calcium, and caused only a shift to the right of the dose-response curve of N-acetyl-beta-glucosaminidase release. This shift was more marked in the presence of 1-methyl-3-isobutylxanthine. In addition, the stimulated breakdown of phosphatidylinositol 4,5 bis-phosphate was inhibited by pertussis toxin. These results suggest that pertussis toxin acts at an early step in the signal transduction and does not affect the sequence of reactions initiated by the activation of the protein kinase C. Furthermore, the guanine nucleotide regulatory protein Gi, but not Gs, is closely involved in signal transduction in these cells.  相似文献   

20.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号