首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extensive tissue remodeling that occurs during follicular development, ovulatory rupture, and the formation and regression of the corpus luteum (CL) requires local degradation of the extracellular environment by matrix metalloproteinases (MMPs). This report characterizes the expression pattern of basigin (Bsg), a putative regulator of MMP induction, in the rat ovary. An induced superovulation model (eCG/hCG) was used in immature rats to evaluate Bsg expression profiles in ovaries collected during the follicular phase, the preovulatory period, and the luteal lifespan. Levels of Bsg mRNA were unchanged through follicular growth (0-48 h post-eCG) and increased during postovulatory luteinization (24 and 48 h post-hCG; P < 0.01). Bsg expression persisted into pseudopregnancy (4-8 days post-hCG) and after functional luteal regression (12 days post-hCG). The profile of Bsg expression during regression of the CL was examined using a model of induced luteolysis. Both functional and structural regression was associated with a decline in Bsg expression levels. Bsg mRNA and protein localized to the theca of preovulatory follicles (12 h post-hCG) and formative and functional CL (24 h-8 days post-hCG). Bsg expression profiles in the induced ovulation and CL regression models were similar to observations made in naturally cycling mature rats. In the cycling ovary, Bsg signaling localized to newly forming CL, the theca of preovulatory follicles, and appeared to be lower in CL from previous estrous cycles. A putative regulatory mechanism of Bsg expression was identified using an in vitro model; treatment of cultured granulosa cells with hCG significantly augmented Bsg mRNA expression levels. The processes of ovulation and luteogenesis may be facilitated by Bsg expression and its induction or regulation of the MMPs.  相似文献   

2.
Apolipoprotein E (apo E) is a 35-kDa protein found in association with various lipoproteins. It is synthesized by a wide variety of tissues, including the ovary. It can serve several functions, such as 1) transport of excess cholesterol from peripheral tissue to the liver; 2) directed movement of cholesterol from areas of high to low cholesterol concentration within tissue or organs; and 3) inhibition of the conversion of theca progesterone to androgen, thus acting as an autocrine or paracrine factor within the ovary. To better understand the physiological role of ovarian apo E, we employed the technique of in situ hybridization utilizing 35S-labeled apo E riboprobes to identify cells containing E mRNA. We studied ovaries of hypophysectomized immature rats administered various regimens of gonadotropins because of the uniform, predictable stimulation of follicular granulosa and theca development, ovulation, and corpus luteum formation. Apo E mRNA was localized predominantly in the theca, with an increase associated with theca hypertrophy. Apo E mRNA increased in granulosa cells with the development of preovulatory Graafian follicles, but decreased to baseline following ovulation and corpus luteum formation. These data are consistent with two roles for apo E in the ovary: 1) directing cholesterol to cells needing cholesterol as substrate for cell proliferation and steroidogenesis, and 2) acting as an autocrine regulatory factor to reduce theca androgen substrate for follicle estrogen production.  相似文献   

3.
4.
5.
We have investigated the effects of indomethacin (IM), a non-steroidal anti-inflammatory drug, and the role of prostaglandins on the accumulation of leukocytes in the rat ovary during the periovulatory period. Adult cycling rats were injected sc with 1 mg of IM in olive oil or vehicle on the morning of proestrus. Some animals were killed at 16:00 h in proestrus. On the evening (19:00 h) of proestrus, IM-treated rats were injected with 500 micrograms of prostaglandin E1 in saline or vehicle. Animals were killed at 01:30 and 09:00 h in estrus. There was an influx of macrophages, neutrophils, and eosinophils into the theca layers of preovulatory follicles, and of neutrophils and eosinophils into the ovarian medulla from 16:00 h in proestrus to 01:30 h in estrus. All these changes, except the accumulation of neutrophils in the theca layers of preovulatory follicles, were blocked by IM treatment. At 09:00 h in estrus, large clusters of neutrophils were observed in IM-treated rats, around abnormally ruptured follicles. The accumulation of leukocytes was not restored by prostaglandin supplementation, despite the inhibition of abnormal follicle rupture and restoration of ovulation in these animals. These results suggest that different mechanisms are involved in leukocyte accumulation in the ovary during the periovulatory period, and that the inhibitory effects of IM on the influx of leukocytes are not dependent on prostaglandin synthesis inhibition.  相似文献   

6.
The expression of bovine follicle-stimulating hormone (FSH)-suppressing protein (FSP) mRNA was investigated in different ovarian tissues of cows. Northern blot analysis, using a cDNA probe to bovine FSP, demonstrated that the FSP gene in the bovine ovary is highly expressed in a pool of isolated granulosa cells. Two bands (2.8 and 1.8 kb) were observed in all tissues expressing the mRNA. FSP mRNA was low in small antral follicles and increased in growing follicles to reach a maximum in preovulatory follicles. Low amounts of mRNA of steady state FSP were observed in all stages of the corpus luteum as well as in the corpus luteum of pregnant cows, in the corpus albicans and theca tissue, whereas this mRNA could not be detected in the liver. These results are consistent with the hypothesis that, in cows, FSP functions as an autocrine regulator in developing follicles to facilitate luteinization of granulosa cells.  相似文献   

7.
Matrix metalloproteinases (MMPs) are instrumental in the constant tissue remodeling in the ovary. An induction of MMP-19 mRNA in periovulatory follicles has been reported in mouse ovaries. However, little is known about MMP-19 expression during the follicular and luteal periods or about the ovarian regulation of MMP-19 mRNA expression. We examined the expression pattern of MMP-19 mRNA during various reproductive phases and the periovulatory regulation of MMP-19 mRNA in the rat ovary. In gonadotropin-primed, immature rat ovaries, levels of MMP-19 mRNA transiently increased during both follicular growth and ovulation. The MMP-19 mRNA was localized to the theca-interstitial layer of growing follicles and to the granulosa and theca-interstitial layers of periovulatory follicles. A similar expression pattern of MMP-19 mRNA in periovulatory follicles was observed in ovaries from naturally cycling adult rats. Accumulation of MMP-19 mRNA was detected in regressing corpus luteum. The regulation of MMP-19 mRNA expression during the periovulatory period was investigated via in vivo studies and through in vitro culture studies on follicular cells. The hCG-induction of MMP-19 mRNA was mimicked by treating granulosa cells, but not theca-interstitial cells, from preovulatory follicles with LH or activators of the protein kinase (PK) A or PKC pathways. Cycloheximide blocked the LH- or forskolin-induced MMP-19 mRNA expression, demonstrating the requirement for new protein synthesis. In contrast, blocking activation of the progesterone receptor or prostaglandin synthesis had no effect on the increase in MMP-19 mRNA expression. In conclusion, the induction of MMP-19 mRNA suggests an important role of this proteinase during follicular growth, ovulation, and luteal regression.  相似文献   

8.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

9.
Seo YM  Park JI  Park HJ  Kim SG  Chun SY 《Life sciences》2007,81(12):1003-1008
Female mice null for receptor-interacting protein 140 (RIP140) are infertile because of the failure of follicle rupture. The present study examined gonadotropin regulation of RIP140 expression in immature rat ovary. Treatment with PMSG increased ovarian RIP140 mRNA and protein levels. In contrast, hCG treatment rapidly inhibited RIP140 mRNA and protein levels within 1-3 h. RIP140 mRNA was detected in theca cells of growing follicles in untreated ovary and in granulosa cells in PMSG-treated ovary. Interestingly, hCG treatment reduced RIP140 mRNA levels in granulosa cells of preovulatory follicles, but not of growing follicles. Neither treatment of immature rats with diethylstilbestrol in vivo nor of immature granulosa cells with FSH in vitro affected RIP140 mRNA levels. Treatment of immature granulosa cells with 17beta-estradiol in vitro, however, stimulated RIP140 mRNA levels. In cultured preovulatory granulosa cells, RIP140 mRNA levels were stimulated at 1 h and then declined to below control levels by 3 h after LH treatment. Treatment with MDL-12,330A, an inhibitor of adenylate cyclase, or chelerythrine chloride, an inhibitor of protein kinase C (PKC), inhibited LH-stimulated RIP140 gene expression. Furthermore, forskolin or TPA treatment for 1 h mimicked the stimulatory action of LH, indicating the involvement of both adenylate cyclase and PKC pathways. These results demonstrate the stimulation by PMSG and inhibition by hCG of RIP140 expression in granulosa cells of preovulatory follicles in the rat ovary.  相似文献   

10.
Basigin is a highly glycosylated transmembrane protein belonging to the immunoglobulin superfamily. Basigin-deficient male mice are azoospermic. The majority of basigin null embryos die around the time of implantation. However, basigin expression and regulation in mouse ovary is still unknown. The aim of this study was to investigate basigin expression in mouse ovary during sexual maturation, gonadotropin treatment, and luteal development by in situ hybridization and immunohistochemistry. Both basigin mRNA and immunostaining were not detected in the granulosa cells of preantral follicles until day 20 after birth. On day 30 after birth, basigin immunostaining dropped to a basal level, while basigin mRNA was still at a high level. Basigin expression was strongly induced by equine chorionic gonadotropin (eCG) treatment at 4 and 8 hr post-eCG injection. Both basigin immunostaining and mRNA signals were strongly observed in the corpus luteum on days 2 and 3 post-hCG injection. However, no basigin expression was detected from days 6 to 15 post-hCG injection. In conclusion, our data suggest that basigin may play a role during the mouse follicle development and corpus luteum formation.  相似文献   

11.
Colloidal carbon was injected i.v. in mature virgin rabbits at different times after induction of ovulation by human chorionic gonadotrophin (hCG, 100 iu) or mating. Before induction of ovulation, slight carbon leakage was observed in the inner vascular ring of the theca interna of antral follicles, but blood vessels in the other ovarian compartments were unstained. Between 4 and 10.5 h after hCG-treatment or mating, vascular leakage was most marked in the blood vessels of the interstitial gland and in the theca interna of antral follicles. Just before ovulation, carbon particles were observed between granulosa cells and some carbon was seeping into the follicular fluid of preruptured follicles. Vascular leakage was also observed over the follicle dome before rupture as well as at the dorsomedial junction between the mesovarium and the ovary. The blood vessels stained with carbon were 7-70 microns diameter, representing capillaries and postcapillary venules. About 6 h after hCG injection, an increased number of polymorphonuclear leucocytes migrated from the vessels of these ovarian compartments into the surrounding interstitial tissue. The number of leucocytes seen in the follicular wall and ovarian medulla increased markedly towards ovulation. During early corpus luteum formation, the number of leucocytes decreased markedly. The localized vascular changes seen after mating and hCG stimulation were similar to an inflammatory reaction and could form the basis for the formation of peritoneal exudate after ovulation in rabbits and periovulatory ascitic accumulation seen in the peritoneal cavity of women during the menstrual cycle.  相似文献   

12.
13.
Ovarian follicles ≥2 mm were studied in 22 Holstein heifers by daily ultrasound examinations. Data were partitioned by right vs. left ovary and corpus luteum bearing ovary vs. the contralateral ovary. There were significantly more (P < 0.03) follicles 4–6 mm, > 13mm and total ≥2 mm in the right ovary, regardless of the presence of a corpus luteum. Significantly more (P < 0.05) follicles 2–3 mm, > 13 mm and total ≥2 mm were observed in the ovary bearing the corpus luteum. Interactions between day and corpus luteum appeared to be due to a greater number of follicles in the ovary bearing the corpus luteum during the first part of the interovulatory interval. There was also a day by right side vs. left side interaction for the number of follicles > 13 mm. Interpretation of the interactions was that the presence of a corpus luteum was conducive to the development of more anovulatory diestrous follicles > 12 mm. However, as regression of the corpus luteum progressed, there was an apparent proclivity for preovulatory follicular development in the right ovary. There was no apparent pattern of alternating sides of ovulation or of alternating sides of development of anovulatory diestrous follicles and preovulatory follicles in heifers observed for more than one interovulatory interval. There was not a significant difference in the maximum diameter attained by the anovulatory diestrous follicle or preovulatory follicle between ovaries ipsilateral or contralateral to the corpus luteum; however, the maximum diameter attained by the preovulatory follicle was greater (P < 0.05) than that attained by the anovulatory diestrous follicle.  相似文献   

14.
15.
Angiogenesis is the process that drives blood vessel development in growing tissues in response to the local production of angiogenic factors. With the present research the authors have studied vascular endothelial growth factor (VEGF) production in ovarian follicles as a potential mechanism of ovarian activity regulation. Prepubertal gilts were treated with 1250 IU equine chorionic gonadotropin (eCG) followed 60 h later by 750 IU of human chorionic gonadotropin (hCG) in order to induce follicle growth and ovulation. Ovaries were collected at different times of the treatment and single follicles were isolated and classified according to their diameter as small (<4 mm), medium (4-5 mm), or large (>5 mm). VEGF levels were measured in follicular fluid by enzyme immunoassay, and VEGF mRNA content was evaluated in isolated theca and granulosa compartments. Equine chorionic gonadotropin stimulated a prompt follicular growth and induced a parallel evident rise in VEGF levels in follicular fluid of medium and large follicles. Analysis of VEGF mRNA levels confirmed the stimulatory effect of eCG, showing that it is confined to granulosa cells, whereas theca cells maintained their VEGF steady state mRNA. Administration of hCG 60 h after eCG caused a dramatic drop in follicular fluid VEGF that reached undetectable levels in 36 h. A parallel reduction in VEGF mRNA expression was recorded in granulosa cells. The stimulating effect of eCG was also confirmed by in vitro experiments, provided that follicles in toto were used, whereas isolated follicle cells did not respond to this hormonal stimulation. Consistent with the observation in vivo, granulosa cells in culture reacted to hCG with a clear block of VEGF production. These results demonstrate that while follicles of untreated animals produce stable and low levels of the angiogenic factor, VEGF markedly rose in medium and large follicles after eCG administration. The increasing levels, essentially attributable to granulosa cells, are likely to be involved in blood vessel development in the wall of growing follicles, and may play a local key role in gonadotropin-induced follicle development. When ovulation approaches, under the effect of hCG, the production of VEGF is switched off, probably creating the safest conditions for the rupture of the follicle wall while theca cells maintained unaltered angiogenic activity, which is probably required for corpus luteum development.  相似文献   

16.
An experiment was carried out on pony mares to establish the time of the oestrous cycle at which ovarian follicles are recruited for ovulation. In one group (n=7), the cycle was interrupted at the preovulatory stage by removing the preovulatory follicle; in another group (n=13) the cycle was interrupted at day 6 of the luteal phase by inducing luteolysis with a prostaglandin injection (PG). In a subgroup (n=7) of those given PG, the ovary not bearing the corpus luteum was removed at the time of injection. A further group (n=6) served as surgical controls. The interval to the next ovulation and blood concentrations of FSH were observed. Anaesthesia alone induced in preovulatory mares was followed by normal ovulation 2.5+/-1 days later. Removal of the preovulatory follicle delayed the next ovulation (14.6+/-2.1 days; P < 0.01). Following PG injection, the interval to ovulation was similar regardless of whether an ovary was removed (12.8+/-4.3 days) or not (10+/-4.1 days). This similarity occurred despite a large and prolonged rise in plasma FSH levels that occurred only in the hemiovariectomized group. In addition, the intervals found after PG injection did not differ from those found after ablation of the preovulatory follicle. These observations indicate that 1) in the presence of the early active corpus luteum or dominant follicle, follicles grow to a similar stage of development; 2) recruitment of the follicle due to ovulation occurs 12 to 14 days before ovulation; 3) limiting new follicular growth to one ovary does not affect the time course to ovulation; and 4) prolonged high FSH levels do not alter the time course or ovulation rate.  相似文献   

17.
In the present study, synchronized follicular growth, ovulations, and luteogenesis were prematurely induced in 26-day-old immature rats by the s.c. injection of 4 IU of pregnant mare's serum gonadotropin (PMSG) at 2100 h. Relative blood flow of follicles/corpora lutea, fallopian tube, and uterus was measured with radioactive microspheres during the periovulatory period (Day 28, 1700 h-Day 31, 1300 h). Also, follicular/corpus luteal light microscopy and plasma progesterone were studied at the same intervals after PMSG injection. It was found that the relative follicular blood flow did not increase after the endogenous gonadotropin surge (Day 29, 0300-0500 h) and toward ovulation (Day 29, 1300-1500 h). During the same time period, light microscopy showed an interstitial edema and extravasation of erythrocytes appearing in the follicular wall near the time of ovulation. The relative blood flow reached its nadir in the young corpus luteum (21 h after ovulation) and increased thereafter (i.e., 48 h after ovulation). Plasma progesterone showed a preovulatory increase and then declined just prior to the ovulatory period. Between 24 and 48 h after ovulation, parallel increases in relative blood flow, morphological vascularization, morphological luteinization, and plasma progesterone levels were observed in the growing corpus luteum. These data indicate that a functional relationship between blood flow and steroid output may exist within the ovarian follicle and corpus luteum.  相似文献   

18.
During the reproductive cycle, ovarian follicles undergo major tissue-remodeling involving vascular changes and proteolysis. Anticoagulant heparan sulfate proteoglycans (aHSPGs) are expressed by granulosa cells during the development of the ovarian follicle. The function of aHSPGs in the ovary is unknown, but they might be involved in proteolysis control through binding and activation of serine protease inhibitors. To identify functional interactions between aHSPGs and heparin-binding protease inhibitors in the follicle, we have coordinately localized aHSPGs, antithrombin III, protease nexin-1, and plasminogen activator inhibitor-1 in the rat ovary during natural and gonadotropin-stimulated cycles. Anticoagulant HSPGs were visualized by autoradiography of cryosections incubated with 125I-antithrombin III, and protease inhibitors were assessed by immunohistochemistry and Northern blot hybridization. Anticoagulant HSPGs were expressed in follicles before ovulation, were transiently decreased in postovulatory follicles, and were abundant in the corpus luteum, mainly on capillaries. Anticoagulant HSPGs were colocalized with protease nexin-1 in follicles from the early antral stage until ovulation, with antithrombin III in the preovulatory stage and after ovulation, and with plasminogen activator inhibitor-1 in the corpus luteum. These data demonstrate that aHSPGs are critically expressed in the ovary to interact sequentially with protease nexin-1, antithrombin III, and plasminogen activator inhibitor-1 during the cycle. The specificity of these inhibitors is shifted toward thrombin inhibition in the presence of heparin, suggesting that aHSPGs direct their action to control fibrin deposition in the follicle. The occupation of aHSPGs antithrombin-binding sites by mutant R393C antithrombin III, injected in the ovarian bursa, decreased ovulation efficiency, further supporting the involvement of aHSPGs in the ovulation process.  相似文献   

19.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

20.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号