首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpTLH) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coli E1772. Functional expression of the peptide transporter was shown by the uptake of prolyl-[14C] alanine in whole cells and membrane vesicles. Peptide transport via DtpT in membrane vesicles is driven by the proton motive force. The system has specificity for di- and tripeptides but not for amino acids or tetrapeptides. The dtpTLH gene consists of 1,491 bp, which translates into a 497-amino-acid polypeptide. DtpTLH shows 34% identity to the di- and tripeptide transport protein of Lactococcus lactis and is also homologous to various peptide transporters of eukaryotic origin, but the similarity between these proteins is confined mainly to the N-terminal halves.  相似文献   

2.
ABC transporters use the energy from binding and hydrolysis of ATP to import or extrude substrates across the membrane. Using ribosome display, we raised designed ankyrin repeat proteins (DARPins) against detergent solubilized LmrCD, a heterodimeric multidrug ABC exporter from Lactococcus lactis. Several target-specific DARPin binders were identified that bind to at least three distinct, partially overlapping epitopes on LmrD in detergent solution as well as in native membranes. Remarkably, functional screening of the LmrCD-specific DARPin pools in L. lactis revealed three homologous DARPins which, when generated in LmrCD-expressing cells, strongly activated LmrCD-mediated drug transport. As LmrCD expression in the cell membrane was unaltered upon the co-expression of activator DARPins, the activation is suggested to occur at the level of LmrCD activity. Consistent with this, purified activator DARPins were found to stimulate the ATPase activity of LmrCD in vitro when reconstituted in proteoliposomes. This study suggests that membrane transporters are tunable in vivo by in vitro selected binding proteins. Our approach could be of biopharmaceutical importance and might facilitate studies on molecular mechanisms of ABC transporters.  相似文献   

3.
Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled promoter system is available, with which the level of expression can be varied with the inducer concentration. Here we describe our experiences with lactococcal expression of the mechanosensitive channel, the human KDEL receptor and transporters belonging to the ABC transporter family, the major facilitator superfamily, the mitochondrial carrier family and the peptide transporter family. Previously published expression studies only deal with the overexpression of prokaryotic membrane proteins, but in this paper, experimental data are presented for the overproduction of mitochondrial and hydrogenosomal carriers and the human KDEL receptor. These eukaryotic membrane proteins were expressed in a functional form and at levels amenable to structural work.  相似文献   

4.
Osmosensing and osmoregulatory compatible solute accumulation by bacteria   总被引:10,自引:0,他引:10  
Bacteria inhabit natural and artificial environments with diverse and fluctuating osmolalities, salinities and temperatures. Many maintain cytoplasmic hydration, growth and survival most effectively by accumulating kosmotropic organic solutes (compatible solutes) when medium osmolality is high or temperature is low (above freezing). They release these solutes into their environment when the medium osmolality drops. Solutes accumulate either by synthesis or by transport from the extracellular medium. Responses to growth in high osmolality medium, including biosynthetic accumulation of trehalose, also protect Salmonella typhimurium from heat shock. Osmotically regulated transporters and mechanosensitive channels modulate cytoplasmic solute levels in Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, Lactobacillus plantarum, Lactococcus lactis, Listeria monocytogenes and Salmonella typhimurium. Each organism harbours multiple osmoregulatory transporters with overlapping substrate specificities. Membrane proteins that can act as both osmosensors and osmoregulatory transporters have been identified (secondary transporters ProP of E. coli and BetP of C. glutamicum as well as ABC transporter OpuA of L. lactis). The molecular bases for the modulation of gene expression and transport activity by temperature and medium osmolality are under intensive investigation with emphasis on the role of the membrane as an antenna for osmo- and/or thermosensors.  相似文献   

5.
Structure-function analysis of multidrug transporters in Lactococcus lactis   总被引:2,自引:0,他引:2  
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding cassette (ABC) superfamily and a bacterial homolog of the human multidrug resistance P-glycoprotein. Another multidrug transporter in L. lactis, LmrP, belongs to the major facilitator superfamily, and is one example of a rapidly expanding group of secondary multidrug transporters in microorganisms. Thus, LmrA and LmrP are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by the same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA represent an intriguing area of research.  相似文献   

6.
Growth of Lactococcus lactis in milk depends on the utilization of extracellular peptides. Up to now, oligopeptide uptake was thought to be due only to the ABC transporter Opp. Nevertheless, analysis of several Opp-deficient L. lactis strains revealed the implication of a second oligopeptide ABC transporter, the so-called Opt system. Both transporters are expressed in wild-type strains such as L. lactis SK11 and Wg2, whereas the plasmid-free strains MG1363 and IL-1403 synthesize only Opp and Opt, respectively. The Opt system displays significant differences from the lactococcal Opp system, which made Opt much more closely related to the oligopeptide transporters of streptococci than to the lactococcal Opp system: (i) genetic organization, (ii) peptide uptake specificity, and (iii) presence of two oligopeptide-binding proteins, OptS and OptA. The fact that only OptA is required for nutrition calls into question the function of the second oligopeptide binding protein (Opts). Sequence analysis of oligopeptide-binding proteins from different bacteria prompted us to propose a classification of these proteins in three distinct groups, differentiated by the presence (or not) of precisely located extensions.  相似文献   

7.
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type multidrug transporter LmrA in Lactococcus lactis are representatives of the two major classes of multidrug transporters found in pro- and eukaryotic organisms. Therefore, knowledge of the molecular properties of LmrP and LmrA will have a wide significance for multidrug transporters in all living cells, and may enable the development of specific inhibitors and of new drugs which circumvent the action of multidrug transporters. Interestingly, LmrP and LmrA are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by t he same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA will represent an intriguing new area of research.  相似文献   

8.
Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.  相似文献   

9.
Sav1866 is an ATP-binding cassette (ABC) protein from the pathogen Staphylococcus aureus and is a homologue of bacterial and human multidrug ABC transporters. Recently, the three-dimensional crystal structure of Sav1866 was determined at 3.0 A resolution [Dawson, R. J., and Locher, K. P. (2006) Nature 443, 180-185]. Although this structure is frequently used to homology model human and microbial ABC multidrug transporters by computational methods, the ability of Sav1866 to transport multiple drugs has not been described. We obtained functional expression of Sav1866 in the drug-sensitive, Gram-positive bacterium Lactococcus lactis Delta lmrA Delta lmrCD lacking major endogenous multidrug transporters. Sav1866 displayed a Hoechst 33342, verapamil, tetraphenylphosphonium, and vinblastine-stimulated ATPase activity. In growing cells, Sav1866 expression conferred resistance to Hoechst 33342. In transport assays in intact cells, Sav1866 catalyzed the translocation of amphiphilic cationic ethidium. Additionally, Sav1866 mediated the active transport of Hoechst 33342 in membrane vesicles and proteoliposomes containing purified and functionally reconstituted protein. Sav1866-mediated resistance and transport were inhibited by the human ABCB1 and ABCC1 modulator verapamil. This work represents the first demonstration of multidrug transport by Sav1866 and suggests that Sav1866 can serve as a well-defined model for studies on the molecular bases of drug-protein interactions in ABC transporters. Our methods for the overexpression, purification, and functional reconstitution of Sav1866 are described in detail.  相似文献   

10.
Members of two transporter families of the ATP-binding cassette (ABC) superfamily use two or even four extracytoplasmic substrate-binding domains (SBDs) for transport. We report on the role of the two SBDs in the translocation cycle of the ABC transporter OpuA from Lactococcus lactis. Heterooligomeric OpuA complexes with only one SBD or one functional and one non-functional SBD (inactivated by covalent linkage of a substrate mimic) have been constructed, and the substrate binding and transport kinetics of the purified transporters, reconstituted in liposomes, have been determined. The data indicate that the two SBDs of OpuA interact in a cooperative manner in the translocation process by stimulating either the docking of the SBDs onto the translocator or the delivery of glycine betaine to the translocator. It appears that one of these initial steps, but not the later steps in translocation or resetting of the system to the initial state, is rate determining for transport. These new insights on the functional role of the extracytoplasmic SBDs are discussed in the light of the current knowledge of substrate-binding-protein-dependent ABC transporters.  相似文献   

11.
ATP-binding cassette (ABC) transporters mediate transport of diverse substrates across membranes. We have determined the quaternary structure and functional unit of the recently discovered ECF-type (energy coupling factor) of ABC transporters, which is widespread among prokaryotes. ECF transporters are protein complexes consisting of a conserved energizing module (two peripheral ATPases and the integral membrane protein EcfT) and a non-conserved integral membrane protein responsible for substrate specificity (S-component). S-components for different substrates are often unrelated in amino acid sequence but may associate with the same energizing module. Here, the energizing module from Lactococcus lactis was shown to form stable complexes with each of the eight predicted S-components found in the organism. The quaternary structures of three of these complexes were determined by light scattering. EcfT, the two ATPases (EcfA and EcfA'), and the S-components were found to be present in a 1:1:1:1 ratio. The complexes were reconstituted in proteoliposomes and shown to mediate ATP-dependent transport. ECF-type transporters are the smallest known ABC transporters.  相似文献   

12.
The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.  相似文献   

13.
14.
AIM: To study the effect of casein-derived peptides, accumulated during growth of Lactococcus lactis in milk, on its oligopeptide transport (Opp) function. METHODS AND RESULTS: This effect was estimated by analysing the ability of casein-derived peptides to compete for the transport of a reporter peptide by whole L. lactis cells. The transport of the reported peptide was monitored by determining the intracellular concentrations of the corresponding amino acids by means of reverse-phase high-performance liquid chromatography (HPLC). Uptake of the reporter peptide was competitively inhibited by casein-derived peptides. The competition was only because of charged casein-derived peptides, including anionic peptides. The design of specific pure peptides made it possible to evidence for a positive (or negative) influence exerted by the positively (or negatively) charged side chain of the N-terminal amino acid on the competition. CONCLUSIONS: Charged casein-derived peptides impaired the oligopeptide transport function of L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate an inhibition of Opp when too many peptides are produced by the proteinase. Peptide transport by Opp therefore represents a bottleneck for increasing the growth rate of L. lactis in milk.  相似文献   

15.
The kinetic properties of wild-type and mutant oligopeptide binding proteins of Lactococcus lactis were determined. To observe the properties of the mutant proteins in vivo, the oppA gene was deleted from the chromosome of L. lactis to produce a strain that was totally defective in oligopeptide transport. Amplified expression of the oppA gene resulted in an 8- to 12-fold increase in OppA protein relative to the wild-type level. The amplified expression was paralleled by increased bradykinin binding activity, but had relatively little effect on the overall transport of bradykinin via Opp. Several site-directed mutants were constructed on the basis of a comparison of the primary sequences of OppA from Salmonella enterica serovar Typhimurium and L. lactis, taking into account the known structure of the serovar Typhimurium protein. Putative peptide binding-site residues were mutated. All the mutant OppA proteins exhibited a decreased binding affinity for the high-affinity peptide bradykinin. Except for OppA(D471R), the mutant OppA proteins displayed highly defective bradykinin uptake, whereas the transport of the low-affinity substrate KYGK was barely affected. Cells expressing OppA(D471R) had a similar K(m) for transport, whereas the V(max) was increased more than twofold as compared to the wild-type protein. The data are discussed in the light of a kinetic model and imply that the rate of transport is determined to a large extent by the donation of the peptide from the OppA protein to the translocator complex.  相似文献   

16.
The ATP dependence of ATP-binding cassette (ABC) transporters has led to the widespread acceptance that these systems are unidirectional. Interestingly, in the presence of an inwardly directed ethidium concentration gradient in ATP-depleted cells of Lactococcus lactis, the ABC multidrug transporter LmrA mediated the reverse transport (or uptake) of ethidium with an apparent K(t) of 2.0 microm. This uptake reaction was competitively inhibited by the LmrA substrate vinblastine and was significantly reduced by an E314A substitution in the membrane domain of the transporter. Similar to efflux, LmrA-mediated ethidium uptake was inhibited by the E512Q replacement in the Walker B region of the nucleotide-binding domain of the protein, which strongly reduced its drug-stimulated ATPase activity, consistent with published observations for other ABC transporters. The notion that ethidium uptake is coupled to the catalytic cycle in LmrA was further corroborated by studies in LmrA-containing cells and proteoliposomes in which reverse transport of ethidium was associated with the net synthesis of ATP. Taken together, these data demonstrate that the conformational changes required for drug transport by LmrA are (i) not too far from equilibrium under ATP-depleted conditions to be reversed by appropriate changes in ligand concentrations and (ii) not necessarily coupled to ATP hydrolysis, but associated with a reversible catalytic cycle. These findings and their thermodynamic implications shed new light on the mechanism of energy coupling in ABC transporters and have implications for the development of new modulators that could enable reverse transport-associated drug delivery in cells through their ability to uncouple ATP binding/hydrolysis from multidrug efflux.  相似文献   

17.
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.  相似文献   

18.
International Journal of Peptide Research and Therapeutics - Lactococcus lactis is a gram positive bacteria that produces nisin, a polycyclic peptide, during fermentation process. In recent...  相似文献   

19.
Lacticin 481 is produced by Lactococcus lactis subsp. lactis and belongs to subgroup AII of the lanthionine-containing bacteriocins. The putative homodimeric LctT involved in lacticin 481 production shares significant similarities with the 'LcnC' protein encoded by 'lcnC', located on the chromosome of the lactic acid bacterium, L. lactis IL1403. LctT and 'LcnC' belong to the recently defined family of AMS (ABC transporter maturation and secretion) proteins. Inactivation of the 'lcnC' gene demonstrates that it is not responsible for the weak lacticin 481 production observed in a strain expressing only the precursor peptide LctA, and the modification enzyme LctM. This result indicates that the two AMS proteins, 'LcnC' and LctT, are not interchangeable in the machinery of processing/export of lacticin 481.  相似文献   

20.
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis delta lmrA delta lmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号