首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Increased resistance of airways or blood vessels within the lung is associated with asthma or pulmonary hypertension and results from contraction of smooth muscle cells (SMCs). To study the mechanisms regulating these contractions, we developed a mouse lung slice preparation containing bronchioles and arterioles and used phase-contrast and confocal microscopy to correlate the contractile responses with changes in [Ca(2+)](i) of the SMCs. The airways are the focus of this study. The agonists, 5-hydroxytrypamine (5-HT) and acetylcholine (ACH) induced a concentration-dependent contraction of the airways. High concentrations of KCl induced twitching of the airway SMCs but had little effect on airway size. 5-HT and ACH induced asynchronous oscillations in [Ca(2+)](i) that propagated as Ca(2+) waves within the airway SMCs. The frequency of the Ca(2+) oscillations was dependent on the agonist concentration and correlated with the extent of sustained airway contraction. In the absence of extracellular Ca(2+) or in the presence of Ni(2+), the frequency of the Ca(2+) oscillations declined and the airway relaxed. By contrast, KCl induced low frequency Ca(2+) oscillations that were associated with SMC twitching. Each KCl-induced Ca(2+) oscillation consisted of a large Ca(2+) wave that was preceded by multiple localized Ca(2+) transients. KCl-induced responses were resistant to neurotransmitter blockers but were abolished by Ni(2+) or nifedipine and the absence of extracellular Ca(2+). Caffeine abolished the contractile effects of 5-HT, ACH, and KCl. These results indicate that (a) 5-HT and ACH induce airway SMC contraction by initiating Ca(2+) oscillations, (b) KCl induces Ca(2+) transients and twitching by overloading and releasing Ca(2+) from intracellular stores, (c) a sustained, Ni(2+)-sensitive, influx of Ca(2+) mediates the refilling of stores to maintain Ca(2+) oscillations and, in turn, SMC contraction, and (d) the magnitude of sustained airway SMC contraction is regulated by the frequency of Ca(2+) oscillations.  相似文献   

2.
Endothelin-1 (ET) induces increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), Ca(2+) sensitization, and contraction of both bronchiole and pulmonary arteriole smooth muscle cells (SMCs) and may play an important role in the pathophysiology of asthma and pulmonary hypertension. However, because it remains unclear how changes in [Ca(2+)](i) and the Ca(2+) sensitivity regulate SMC contraction, we have studied mouse lung slices with phase-contrast and confocal microscopy to correlate the ET-induced contraction with the changes in [Ca(2+)](i) and Ca(2+) sensitivity of bronchiole and arteriole SMCs. In comparison with acetylcholine (ACh) or serotonin (5-HT), ET induced a stronger and long-lasting contraction of both bronchioles and arterioles. This ET-induced contraction was associated with prominent asynchronous Ca(2+) oscillations that were propagated as Ca(2+) waves along the SMCs. These Ca(2+) oscillations were mediated by cyclic intracellular Ca(2+) release and required external Ca(2+) for their maintenance. Importantly, as the frequency of the Ca(2+) oscillations increased, the extent of contraction increased. ET-induced contraction was also associated with an increase in Ca(2+) sensitivity. In "model" slices in which the [Ca(2+)](i) was constantly maintained at an elevated level by pretreatment of slices with caffeine and ryanodine, the addition of ET increased bronchiole and arteriole contraction. These results indicate that ET-induced contraction of bronchiole and arteriole SMCs is regulated by the frequency of Ca(2+) oscillations and by increasing the sensitivity of the contractile machinery to Ca(2+).  相似文献   

3.
To investigate the mechanism of smooth muscle contraction, the frequency response of the muscle stiffness of single beta-escin permeabilized smooth muscle cells in the relaxed state was studied. Also, the response was continuously monitored for 3 min from the beginning of the exchange of relaxing solution to activating solution, and then at 5-min intervals for up to 20 min. The frequency response (30 Hz bandwidth, 0.33 Hz (or 0.2 Hz) resolution) was calculated from the Fourier-transformed force and length sampled during a 3-s (or 5-s) constant-amplitude length perturbation of increasing-frequency (1-32 Hz) sine waves. In the relaxed state, a large negative phase angle was observed, which suggests the existence of attached energy generating cross-bridges. As the activation progressed, the muscle stiffness and phase angle steadily increased; these increases gradually extended to higher frequencies, and reached a steady state by 100 s after activation or approximately 40 s after stiffness began to increase. The results suggest that a fixed distribution of cross-bridge states was reached after 40 s of Ca2+ activation and the cross-bridge cycling rate did not change during the period of force maintenance.  相似文献   

4.
In airway smooth muscle cells (SMCs) from mouse lung slices, > or =10 microM ATP induced Ca2+ oscillations that were accompanied by airway contraction. After approximately 1 min, the Ca2+ oscillations subsided and the airway relaxed. By contrast, > or =0.5 microM adenosine 5'-O-(3-thiotriphosphate) (nonhydrolyzable) induced Ca2+ oscillations in the SMCs and an associated airway contraction that persisted for >2 min. Adenosine 5'-O-(3-thiotriphosphate)-induced Ca2+ oscillations occurred in the absence of external Ca2+ but were abolished by the phospholipase C inhibitor U-73122 and the inositol 1,4,5-trisphosphate receptor inhibitor xestospongin. Adenosine, AMP, and alpha,beta-methylene ATP had no effect on airway caliber, and the magnitude of the contractile response induced by a variety of nucleotides could be ranked in the following order: ATP = UTP > ADP. These results suggest that the SMC response to ATP is impaired by ATP hydrolysis and mediated via P2Y(2) or P2Y(4) receptors, activating phospholipase C to release Ca2+ via the inositol 1,4,5-trisphosphate receptor. We conclude that ATP can serve as a spasmogen of airway SMCs and that Ca2+ oscillations in SMCs are required to sustain airway contraction.  相似文献   

5.
Nitric oxide (NO) induces airway smooth muscle cell (SMC) relaxation, but the underlying mechanism is not well understood. Consequently, we investigated the effects of NO on airway SMC contraction, Ca2+ signaling, and Ca2+ sensitivity in mouse lung slices with phase-contrast and confocal microscopy. Airways that were contracted in response to the agonist 5-hydroxytryptamine (5-HT) transiently relaxed in response to the NO donor, NOC-5. This NO-induced relaxation was enhanced by zaprinast or vardenafil, two selective inhibitors of cGMP-specific phosphodiesterase-5, but blocked by ODQ, an inhibitor of soluble guanylyl cyclase, and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Simultaneous measurements of airway caliber and SMC [Ca2+]i revealed that airway contraction induced by 5-HT correlated with the occurrence of Ca2+ oscillations in the airway SMCs. Airway relaxation induced by NOC-5 was accompanied by a decrease in the frequency of these Ca2+ oscillations. The cGMP analogues and selective PKG activators 8Br-cGMP and 8pCPT-cGMP also induced airway relaxation and decreased the frequency of the Ca2+ oscillations. NOC-5 inhibited the increase of [Ca2+]i and contraction induced by the photolytic release of inositol 1,4,5-trisphosphate (IP3) in airway SMCs. The effect of NO on the Ca2+ sensitivity of the airway SMCs was examined in lung slices permeabilized to Ca2+ by treatment with caffeine and ryanodine. Neither NOC-5 nor 8pCPT-cGMP induced relaxation in agonist-contracted Ca2+-permeabilized airways. Consequently, we conclude that NO, acting via the cGMP–PKG pathway, induced airway SMC relaxation by predominately inhibiting the release of Ca2+ via the IP3 receptor to decrease the frequency of agonist-induced Ca2+ oscillations.  相似文献   

6.
The soy-derived isoflavones genistein and daidzein affect the contractile state of different kinds of smooth muscle. We describe acute effects of genistein and daidzein on contractile force and intracellular Ca2+ concentration ([Ca2+]i) in in situ smooth muscle of rat aorta. Serotonin (5-HT) (2 microM) or a depolarizing high K+ solution produced the contraction of aortic rings, which were immediately relaxed by 20 microM genistein and by 20 microM daidzein. Accordingly, both 5-HT and a high K+ solution increased the [Ca2+]i in in situ smooth muscle cells. Genistein strongly inhibited the [Ca2+]i increase evoked by 5-HT (74.0 +/- 7.3%, n = 11, p < 0.05), and had a smaller effect on high K+ induced [Ca2+]i increase (19.9 +/- 4.0%, n = 7, p < 0.05). The K+ channels blocker tetraethylammonium (TEA) (0.5 mM) diminished genistein effects on 5-HT-induced [Ca2+]i increase. Interestingly, during prolonged application of 5-HT, the [Ca2+]i oscillated and a short (90 s) preincubation with genistein (20 microM) significantly diminished the frequency of the oscillations. This effect was totally abolished by TEA. In conclusion, in rat aortic smooth muscle, genistein is capable of diminishing the increase in [Ca2+]i and in force evoked by 5-HT and high K+ solution, and of decreasing the frequency of [Ca2+]i oscillations induced by 5-HT. The short time required by genistein, and the relaxing effect of daidzein suggest that tyrosine kinases inhibition is not involved. The small inhibiting effect of genistein on the [Ca2+]i increase evoked by high K+ and the effect of TEA point to the activation by genistein of calcium-activated K+ channels.  相似文献   

7.
The source, time course and stoichiometry of cytosolic free Ca2+ ([Ca2+]i) during contraction were examined in smooth muscle cells isolated from the guinea pig and human stomach. Contraction by receptor-linked agonists (eg, acetylcholine, cholecystokinin octapeptide and Met-enkephalin) was preceded by stoichiometric increases in [Ca2+]i and net 45Ca2+ efflux that were maintained in the absence of extracellular Ca2+ or in the presence of a Ca2+ channel blocker (13600). The intracellular Ca2+ store could be depleted by repeated stimulation with all agonists in Ca2+-free medium or in the presence of 13600 resulting in loss of contractile response; response was restored by re-exposure of the cells to Ca2+.The source of intracellular Ca2+ an the signal for its release were examined in saponin-permeabilized muscle cells. The cells retained their ability to contract in response to receptor-linked agonists and developed an ability to contract in response to inositol trisphosphate (IP3). The cells accumulated Ca2+ to the same extent as intact muscle cells, but only in the presence of ATP. IP3 caused a prompt, concentration-dependent increase in contraction, [Ca2+]i and net 45Ca2+ efflux. These effects were maximally similar to those produced by CCK-8 alone or in combination with IP3: Depletion of the Ca2+ store by repeated stimulation of single muscle cells in Ca2+-free medium with IP3, acetylcholine or CCK-8 separately resulted in loss of contractile response to all three agents; the response was restored by re-exposure of the muscle cell to a cytosol-like perfusate (Ca2+ 180 nM).The studies demonstrate that a product of membrane phosphoinositide hydrolysis is capable of mobilizing Ca2+ from a depletable, non-mitochondrial intracellular store that is utilized by receptor-linked agonists. The magnitude of IP3-induced Ca2+ release is correlated with contraction.  相似文献   

8.
INTRODUCTION In vascular smooth muscle, as in other types of muscle,an increase in intracellular Ca2 is the immediate triggerfor contraction, which ultimately determines vascular toneand peripheral resistance. In the past 12 years, investiga-tors have …  相似文献   

9.
D Raeburn  I W Rodger  D W Hay  J S Fedan 《Life sciences》1986,38(16):1499-1505
Isolated guinea-pig and rabbit airway smooth muscle preparations lacking cartilage are less able to contract, in response to methacholine, histamine and K+, in the absence of extracellular Ca2+ than cartilage-containing preparations removed from the same animal. Cartilage apparently provides utilizable Ca2+ for contraction of airway smooth muscle. The presence of cartilage, therefore, affects the apparent dependence of the isolated smooth muscle on extracellular Ca2+ for contraction.  相似文献   

10.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

11.
The Ca(2+) signaling and contractility of airway smooth muscle cells (SMCs) were investigated with confocal microscopy in murine lung slices (approximately 75-microm thick) that maintained the in situ organization of the airways and the contractility of the SMCs for at least 5 d. 10--500 nM acetylcholine (ACH) induced a contraction of the airway lumen and a transient increase in [Ca(2+)](i) in individual SMCs that subsequently declined to initiate multiple intracellular Ca(2+) oscillations. These Ca(2+) oscillations spread as Ca(2+) waves through the SMCs at approximately 48 microm/s. The magnitude of the airway contraction, the initial Ca(2+) transient, and the frequency of the subsequent Ca(2+) oscillations were all concentration-dependent. In a Ca(2+)-free solution, ACH induced a similar Ca(2+) response, except that the Ca(2+) oscillations ceased after 1--1.5 min. Incubation with thapsigargin, xestospongin, or ryanodine inhibited the ACH-induced Ca(2+) signaling. A comparison of airway contraction with the ACH-induced Ca(2+) response of the SMCs revealed that the onset of airway contraction correlated with the initial Ca(2+) transient, and that sustained airway contraction correlated with the occurrence of the Ca(2+) oscillations. Buffering intracellular Ca(2+) with BAPTA prohibited Ca(2+) signaling and airway contraction, indicating a Ca(2+)-dependent pathway. Cessation of the Ca(2+) oscillations, induced by ACH-esterase, halothane, or the absence of extracellular Ca(2+) resulted in a relaxation of the airway. The concentration dependence of the airway contraction matched the concentration dependence of the increased frequency of the Ca(2+) oscillations. These results indicate that Ca(2+) oscillations, induced by ACH in murine bronchial SMCs, are generated by Ca(2+) release from the SR involving IP(3)- and ryanodine receptors, and are required to maintain airway contraction.  相似文献   

12.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

13.
1. The abilities of two indole agonists and some nonindole agonists to induce relaxation of catch contraction and the influence of the agonists on cyclic AMP (cAMP) levels in the anterior byssus retractor muscle (ABRM) of Mytilus were investigated. 2. 5-MeOT (5-methoxytryptamine) and 5-MeODMT (5-methoxy-N,N-dimethyltryptamine) dose-dependently relaxed the contraction. 3. TFMPP (m-trifluoromethylphenyl piperazine), PAPP (p-amino-phenyl TFMPP) and mCPP (1-(3-chlorophenyl)piperazine dose-dependently relaxed the contraction, but 2MPP (1-(2-methylphenyl) piperazine and quipazine did not. 4. 5-MeOT (10(-6)M), 5-MeODMT (10(-6)M), TFMPP (10(-4)M), 2MPP (10(-4)M), quipazine (10(-4)M) and 8-OH-DPAT (3 x 10(-5) M) significantly reduced the cAMP levels, but PAPP (3 x 10(-4)M) and mCPP (10(-4)M) did not have any effect on cAMP levels. 5. These findings indicate that the pharmacological properties of 5-HT1-like receptors in the ABRM are similar to those of 5-HT1A receptors in mammalian tissues, and that the changes in cAMP levels induced by the agonists used are unlikely to be directly linked to the relaxation induced by them.  相似文献   

14.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

15.
It was reported that neuropeptide Y (NPY) affects cardiac and vascular smooth muscle (VSM) function probably by increasing intracellular Ca2+. In this study, using fura-2 microfluorometry and fluo-3 confocal microscopy techniques for intracellular Ca2+ measurement, we attempted to verify whether the action of NPY receptor's stimulation in heart and VSM cells modulates intracellular Ca2+ and whether this effect is mediated via the Y1 receptor type. Using spontaneously contracting single ventricular heart cells of 10-day-old embryonic chicks and the fluo-3 confocal microscopy Ca2+ measurement technique to localize cytosolic ([Ca]c) and nuclear ([Ca]n) free Ca2+ level and distribution, 10-10 M of human (h) NPY significantly (P < 0.05) increased the frequency of cytosolic and nuclear Ca2+ transients during spontaneous contraction. Increasing the concentration of hNPY (10(-9) M) did not further increase the frequency of Ca2+ transients. The L-type Ca2+ channel blocker, nifedipine (10(-5) M), significantly (P < 0.001) blocked the spontaneous rise of intracellular Ca2+ in the absence and presence of hNPY (10(-10) and 10(-9) M). However, the selective Y1 receptor antagonist, BIBP3226 (10(-6) M), significantly decreased the hNPY-induced (10(-10) and 10(-9) M) increase in the frequency of Ca2+ transients back to near the control level (P < 0.05). In resting nonworking heart and human aortic VSM cells, hNPY induced a dose-dependent sustained increase of basal resting intracellular Ca2+ with an EC50 near 10(-9) M. This sustained increase was cytosolic and nuclear and was completely blocked by the Ca2+ chelator EGTA, and was significantly decreased by the Y1 receptor antagonist BIBP3226 in both heart (P < 0.05) and VSM (P < 0.01) cells. These results strongly suggest that NPY stimulates the resting basal steady-state Ca2+ influx through the sarcolemma and induces sustained increases of cytosolic and nuclear calcium, in good part, via the activation of the sarcolemma membrane Y1 receptor type in both resting heart and VSM cells. In addition, NPY also increased the frequency of Ca2+ transients during spontaneous contraction of heart cells mainly via the activation of the Y1 receptor type, which may explain in part the active cardiovascular action of this peptide.  相似文献   

16.
Cytosolic-free [Ca2+] was evaluated in freshly dissociated smooth muscle cells from mouse thoracic aorta by the ratio of Fura Red and Fluo 4 emitted fluorescence using confocal microscopy. The role of intercellular communication in forming and shaping ATP-elicited responses was demonstrated. Extracellular ATP (250 microM) elicited [Ca2+]i transient responses, sustained [Ca2+]i rise, periodic [Ca2+]i oscillations and aperiodic repetitive [Ca2+]i transients. Quantity of smooth muscle cells in the preparation responding to ATP with periodical [Ca2+]i oscillations depended on the density of isolated cells on the cover slip. ATP-elicited bursts of [Ca2+]i spikes in 66+/-7% of cells in dense and in 33+/-8.5% of cells in non-dense preparations. The number of cells responding to ATP with bursts of [Ca2+]i spikes decreased from 55+/-5% (n=84) to 14+/-3% (n=141) in dense preparations pretreated with carbenoxolone. Simultaneous measurement of [Ca2+]i and ion currents revealed a correlation between [Ca2+]i and current oscillations. ATP-elicited bursts of current spikes in 76% of cells regrouped in small clusters and in 9% of isolated cells. Clustered cells responding to ATP with current oscillations had higher membrane capacity than clustered cells with transient and sustained ATP-elicited responses. Lucifer Yellow (1% in 130 mM KCl) injected into one of clustered cells was transferred to the neighboring cell only when ATP-elicited oscillations. Fast application of carbenoxolone (100 microM) inhibited ATP (250 microM) elicited Ca2+-dependent current oscillations. Taken together these results suggest that the probability of ATP (250 microM) triggered cytosolic [Ca2+]i oscillations accompanied with K+ and Cl- current oscillations increased with the coupling of smooth muscle cells.  相似文献   

17.
A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.  相似文献   

18.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号