首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-terminal amino-acid sequence of a major rice phloem-sap protein, named RPP10, was determined. RPP10 is encoded by a single gene in the rice genome. Its complete amino-acid sequence, predicted from the corresponding rice full-length cDNA, showed high similarity to plant acyl-CoA-binding proteins (ACBPs). Western blot analysis using anti-ACBP antiserum revealed that putative ACBP is abundant in the phloem sap of rice plants, and is also present in sieve-tube exudates of winter squash (Cucurbita maxima), oilseed rape (Brassica napus), and coconut palm (Cocos nucifera). These findings give rise to the idea that ACBP may involve lipid metabolism and regulation in the phloem.  相似文献   

2.
Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.  相似文献   

3.
4.
Rice (Oryza sativa L.) phloem sieve tubes contain RPP13-1, a thioredoxin h protein that moves around the plant via the translocation stream. Such phloem-mobile proteins are thought to be synthesized in the companion cells prior to being transferred, through plasmodesmata, to the enucleate sieve-tube members. In this study, in-situ hybridization experiments confirmed that expression of RPP13-1 is restricted to companion cells within the mature phloem. To test the hypothesis that RPP13-1 enters the sieve tube, via plasmodesmata, recombinant RPP13-1 was expressed in Escherichia coli, extracted, purified and fluorescently labeled with fluorescein isothiocyanate (FITC) for use in microinjection experiments into tobacco (Nicotiana tabacum L.) mesophyll cells. The FITC-RPP13-1 moved from the injected cell into surrounding cells, whereas the E. coli thioredoxin, an evolutionary homolog of RPP13-1, when similarly labeled and injected, failed to move in this same experimental system. In addition, co-injection of RPP13-1 and FITC-dextrans established that RPP13-1 can induce an increase in plasmodesmal size exclusion limit to a value greater than 9.4 but less than 20 kDa. Nine mutant forms of RPP13-1 were constructed and tested for their capacity to move from cell to cell; two such mutants were found to be incapable of movement. Crystal-structure prediction studies were performed on wild-type and mutant RPP13-1 to identify the location of structural motifs required for protein trafficking through plasmodesmata. These studies are discussed with respect to plasmodesmal-mediated transport of macromolecules within the companion cell-sieve tube complex. Received: 6 June 1997 / Accepted 25 June 1997  相似文献   

5.
The systemic movement of Cucumber mosaic virus (CMV) in cucumber plants was analyzed. The structure that is translocated and its putative interactions with phloem components were analyzed in phloem exudate (PE) samples, which reflect sieve tubes stream composition. Rate zonal centrifugation and electron-microscopy analyses of PE from CMV-infected plants showed that CMV moves through sieve tubes as virus particles. Gel overlay assays revealed that CMV particles interact with a PE protein, p48. The amino-acid sequence of several tryptic peptides of p48 was determined. Partial amino-acid sequence of p48 showed it was a cucumber homolog of phloem protein 1 (PP1) from pumpkin, with which p48 also shares several chemical properties. PP1 from pumpkin has plasmodesmata-gating ability and translocates in sieve tubes. Encapsidated CMV RNA in PE samples from infected plants was less accessible to digestion by RNase A than RNA in purified CMV particles, a property that was reconstituted by the in vitro interaction of purified CMV particles and protein p48. These results indicate that the interaction with p48 modifies CMV particle structure and suggest that CMV particles interact with the cucumber homolog of PP1 during translocation in the sieve tubes.  相似文献   

6.
Electron microscopy of sugarbeet leaves infected with the beet curly top virus confirmed earlier findings by light microscopy that the hyperplastic phloem consists mainly of sieve elements that are more or less abnormal in structure. Some parenchyma cells and occasional companion cells may be present. The hyperplastic phloem develops in the place of normal phloem and sometimes in the adjacent ground tissue and the xylem. The sieve elements vary in shape and may be haphazardly arranged. The protoplasts of the sieve elements have the usual characteristics of this type of cell. The sieve element plastids develop from chloroplasts if the hyperplasia occurs in chloroplast-containing parenchyma cells. The cell walls have sieve areas that often are less well differentiated than those of normal sieve elements. The hyperplastic growth in the phloem of curly top diseased plants is discussed with reference to plant tumors induced by certain other plant viruses.  相似文献   

7.
The phloem, a miracle of ingenuity   总被引:26,自引:2,他引:24  
This review deals with aspects of the cellular and molecular biology of the sieve element/companion cell complex, the functional unit of sieve tubes in angiosperms. It includes the following issues: (a) evolution of the sieve elements; (b) the specific structural outfit of sieve elements and its functional significance; (c) modes of cellular and molecular interaction between sieve element and companion cell; (d) plasmodesmal trafficking between sieve element and companion cell as the basis for macromolecular long‐distance signalling in the phloem; (e) diversity of sieve element/companion cell complexes in the respective phloem zones (collection phloem, transport phloem, release phloem); (f) deployment of carriers, pumps and channels on the plasma membrane of sieve element/companion cell complexes in various phloem zones; and (g) implications of the molecular‐cellular equipment of sieve element/companion cells complexes for mass flow of water and solutes in a whole‐plant frame.  相似文献   

8.
9.
Thioredoxin (TRX) h was identified as a major protein in rice ( Oryza sativa L. cv. Kantou) phloem sap. Accumulation of TRX h mRNA in fully expanded rice leaves was detected only in the companion cells. To clarify the role of TRX h in phloem development, we performed in situ hybridization of TRX h mRNA in rice plants during the course of vascular development. TRX h mRNA was detected in all cell types at an early stage of development and became gradually confined to the companion cells in later stages. The possible roles of TRX h in vascular development are discussed.  相似文献   

10.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

11.
W. Eschrich  J. Fromm  R. F. Evert 《Protoplasma》1992,167(3-4):145-151
Summary For the histochemical localization of nucleoside triphosphatases at the electron microscopic level, prefixed tissues were incubated with lead nitrate in addition to substrate (GOMORI reaction). While ATP and UTP as substrates gave electron-dense reaction products at the plasmalemma of sieve tubes, companion cells and phloem parenchyma cells, and at plasmodesmata in primary pitfields, AMP gave reaction products only at the tonoplast of parenchyma cells. Since electron-dense deposits also occur in cell walls and vacuoles, energy dispersive X-ray microanalysis was used to distinguish between lead deposits and lead-phosphate deposits. The latter were restricted to the symplast. Among the three plant species used, the leaf bundle phloem ofHordeum distichon showed ATPase activity largely restricted to the phloem cells, except for the thickwalled sieve tubes. Some activity also bordered the chloroplasts of the bundle sheath cells. In the C4 plantGomphrena globosa, ATPase and UTPase activities appeared to be the greater in phloem parenchyma cells than in sieve tubes. In the phloem of youngMonstera deliciosa roots, ATPase occurred not only at the plasmalemma of sieve tubes, but also around sieve-tube plastids. When compared with AMP as substrate, it appears that nucleoside triphosphates are the natural substrates of the enzyme(s) in the plasmalemma of sieve tubes and phloem parenchyma cells.  相似文献   

12.
A monoclonal antibody, 12C9, an anti-idiotypic mimic of dothistromin, a toxin produced by Dothistroma pini, was found to label the cell wall of sieve elements in a number of different plant tissues and species. The antibody labeled apple leaf tissue, tobacco leaf mid vein, leaf and meristem, and Coprosma robusta leaf mid vein. Labeling was restricted to cell walls of sieve elements and did not label the companion cells or the lumen of the cells. The antibody labeled over a wide range of dilutions. This antibody could be used to differentiate sieve elements from other types of phloem. It could also be used to co-localize sieve elements and microorganisms such as phytoplasmas stained with DAPI.  相似文献   

13.
Hayashi  H.  Nakamura  S.  Ishiwatari  Y.  Mori  S.  Chino  M. 《Plant and Soil》1993,(1):171-174
Pure phloem sap was collected from insects feeding on rice (Oryza sativa L.) leaves by a laser technique similar to the aphid stylet technique. Rapid circulation of nitrogen in the sieve tubes was demonstrated directly using 15N as a tracer. Application to the roots of the metabolic inhibitors of amino acids, aminooxyacetate and methioninesulfoximine, changed the amino acid composition in the sieve tubes. Feeding methionine to leaf tips resulted in its bulk transfer into the sieve tubes. In vitro experiments confirmed the existence of protein kinases in the pure rice phloem sap. The phosphorylation status of the sieve tube sap proteins was affected by the light regime. The possibility that changes in chemical composition or protein modification such as phosphorylation in the sieve tubes might affect plant growth are discussed.Analysis of pure phloem sap collected from rice plants by insect laser technique has shown dynamic changes in the chemical composition and the quality of proteins in the sap.  相似文献   

14.
Koh EJ  Zhou L  Williams DS  Park J  Ding N  Duan YP  Kang BH 《Protoplasma》2012,249(3):687-697
Huanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate. We examined citrus leaf phloem cells by microscopy methods to characterize plant responses to Liberibacter infection and the contribution of these responses to the pathogenicity of HLB. Plasmodesmata pore units (PPUs) connecting companion cells and sieve elements were stained with a callose-specific dye in the Liberibacter-infected leaf phloem cells; callose accumulated around PPUs before starch began to accumulate in the chloroplasts. When examined by transmission electron microscopy, PPUs with abnormally large callose deposits were more abundant in the Liberibacter-infected samples than in the uninfected samples. We demonstrated an impairment of symplastic dye movement into the vascular tissue and delayed photoassimilate export in the Liberibacter-infected leaves. Liberibacter infection was also linked to callose deposition in the sieve plates, which effectively reduced the sizes of sieve pores. Our results indicate that Liberibacter infection is accompanied by callose deposition in PPUs and sieve pores of the sieve tubes and suggest that the phloem plugging by callose inhibits phloem transport, contributing to the development of HLB symptoms.  相似文献   

15.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

16.
To determine the requirements for viral proteins exiting the phloem, transgenic plants expressing green fluorescent protein (GFP) fused to the Potato virus X (PVX) triple gene block (TGB)p1 and coat protein (CP) genes were prepared. The fused genes were transgenically expressed from the companion cell (CC)-specific Commelina yellow mottle virus (CoYMV) promoter. Transgenic plants were selected for evidence of GFP fluorescence in CC and sieve elements (SE) and proteins were determined to be phloem mobile based on their ability to translocate across a graft union into nontransgenic scions. Petioles and leaves were analyzed to determine the requirements for phloem unloading of the fluorescence proteins. In petioles, fluorescence spread throughout the photosynthetic vascular cells (chlorenchyma) but did not move into the cortex, indicating a specific barrier to proteins exiting the vasculature. In leaves, fluorescence was mainly restricted to the veins. However, in virus-infected plants or leaves treated with a cocktail of proteasome inhibitors, fluorescence spread into leaf mesophyll cells. These data indicate that PVX contributes factors which enable specific unloading of cognate viral proteins and that proteolysis may play a role in limiting proteins in the phloem and surrounding chlorenchyma.  相似文献   

17.
A monoclonal antibody, 12C9, an anti-idiotypic mimic of dothistromin, a toxin produced by Dothistroma pini, was found to label the cell wall of sieve elements in a number of different plant tissues and species. The antibody labeled apple leaf tissue, tobacco leaf mid vein, leaf and meristem, and Coprosma robusta leaf mid vein. Labeling was restricted to cell walls of sieve elements and did not label the companion cells or the lumen of the cells. The antibody labeled over a wide range of dilutions. This antibody could be used to differentiate sieve elements from other types of phloem. It could also be used to co-localize sieve elements and microorganisms such as phytoplasmas stained with DAPI.  相似文献   

18.
Abstract. Glutaraldehyde fixation was used to determine the solute concentrations in the various cell types present in tissue cultures of squash ( Cucurbita pepo ). Small pieces of callus were plasmolyzed in a graded series of mannitol solutions and fixed in 20 kg m−3 glutaraldehyde adjusted to be isosmotic with the particular plasmolysing solution. The callus samples were further processed using standard electron microscopy techniques. Using this procedure, mature sieve elements that form in squash callus have an osmotic potentional of -2.4MPa. The osmotic potential of the callus sieve elements was comparable to values reported for the sieve tube members of the phloem in intact plants. This ability of callus sieve elements to develop high internal hydrostatic pressures demonstrates that they are capable of phloem loading. However, the osmotic potentials of the surrounding parenchymatous cells and companion cells were only –1.15 and –1.5 MPa, respectively. In contrast to the companion cells of the phloem in intact plant tissues, the osmotic potential of the callus companion cells indicated that they were not directly involved in phloem loading. Several immature sieve elements containing distinct nuclei and vacuoles were observed in the callus granules. These immature sieve elements were plasmolyzed in weaker mannitol solutions (below 0.6kmol m−3) than the enucleate sieve elements (1.01 kmol m−3 mannitol). The low solute concentrations in immature sieve elements indicated that the ability to load sugars occurs concomitantly with the maturation of the sieve element protoplast.  相似文献   

19.
Sieve elements in the phloem of most angiosperms contain proteinaceous filaments and aggregates called P-protein. In the genus Cucurbita, these filaments are composed of two major proteins: PP1, the phloem filament protein, and PP2, the phloem lectin. The gene encoding the phloem filament protein in pumpkin (Cucurbita maxima Duch.) has been isolated and characterized. Nucleotide sequence analysis of the reconstructed gene gPP1 revealed a continuous 2430 bp protein coding sequence, with no introns, encoding an 809 amino acid polypeptide. The deduced polypeptide had characteristics of PP1 and contained a 15 amino acid sequence determined by N-terminal peptide sequence analysis of PP1. The sequence of PP1 was highly repetitive with four 200 amino acid sequence domains containing structural motifs in common with cysteine proteinase inhibitors. Expression of the PP1 gene was detected in roots, hypocotyls, cotyledons, stems, and leaves of pumpkin plants. PP1 and its mRNA accumulated in pumpkin hypocotyls during the period of rapid hypocotyl elongation after which mRNA levels declined, while protein levels remained elevated. PP1 was immunolocalized in slime plugs and P-protein bodies in sieve elements of the phloem. Occasionally, PP1 was detected in companion cells. PP1 mRNA was localized by in situ hybridization in companion cells at early stages of vascular differentiation. The developmental accumulation and localization of PP1 and its mRNA paralleled the phloem lectin, further suggesting an interaction between these phloem-specific proteins.  相似文献   

20.
The sink effect of cytokinin is manifested as a decrease in source capacity and the induction of sink activity in the phytohormone-treated region of a mature excised leaf. In order to find out whether this effect was due to the direct action of cytokinin on the phloem structure, two types of phloem terminals were examined. In pumpkin (Cucurbita pepo L.) leaves, the phloem terminals are open; i.e., they are linked to mesophyll by numerous symplastic connections, which are located in narrow areas called plasmodesmal pit fields. In broad bean (Vicia faba L.) leaves, the phloem terminals belong to the closed type and have no symplastic links with mesophyll. The electron microscopic study of terminal phloem did not reveal any structural changes in the companion cells, which could account for the suppression of assimilate export. The treatment of leaves with cytokinin neither disturbed the structure of plasmodesmal pit fields in pumpkin leaves nor eliminated the wall protuberances (the ingrowths promoting phloem loading) in bean leaves. No evidence was obtained that the cytokinin-induced import of assimilates in mature leaves is caused by the recovery of meristematic activity, i.e., by either formation of new phloem terminals having immature sieve elements capable of unloading or by the development of new sieve elements within the existing veins. Cytokinin did not induce de novo formation of phloem elements. Structural characteristics of the leaf phloem, such as the number of branching orders in the venation pattern, the number of vein endings per areole, the number of areoles per leaf, the area of one areole, and the number of sieve elements per bundle remained unaltered. It is concluded that the sink effect of cytokinin in excised leaves cannot be determined by alteration of the phloem structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号