首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

2.
We obtained a monoclonal antibody (MA-1) specific for macronuclei of the ciliate Paramecium caudatum and P. dubosqui. Immunoblotting showed that the antigen was a polypeptide of 50 kilodalton (kDa). During the process of nuclear differentiation in P. caudatum, the MA-1 antigens appeared in the macronuclear anlagen immediately after four out of eight post zygotic nuclei differentiated morphologically into the macronuclear anlagen. Afterwards, the antigens could be detected in the macronucleus through the cell cycle, and disappeared when the macronucleus began to degenerate in exconjugant cells. These results suggest that the antigens may play a role in the differentiation and function of the macronucleus.  相似文献   

3.
During conjugation of Paramecium caudatum, nuclear determination occurs soon after the third postzygotic division: one of the four anterior nuclei becomes the micronucleus and the remaining three degenerate, while four posterior nuclei differentiate into macronuclear anlagen. Macronuclear differentiation is supposed to be dependent on a cytoplasmic differentiation factor. In this study, postzygotic cells were subjected to heat shock for 30 min and nuclear changes were observed by staining with carbol fuchsin solution. When heat shock was initiated during the period from metaphase to telophase of the third postzygotic division, cells showed an excess of macronuclear anlagen and were typically amicronucleate. Abnormal nuclear localization around the end of the third (last) postzygotic division may explain the origin of these kinds of cells. A similar phenomenon appeared after treatment with actinomycin D or emetine. Since heat shock did not inhibit macronuclear differentiation but destroyed the formation of micronuclei, some factor(s) probably plays an essential role in nuclear determination, especially in the protection of the micronuclei.  相似文献   

4.
Nuclear behavior during reconjugation and the ultimate fate of the ex-reconjugants were followed after induction of reconjugation in Euplotes patella. An exconjugant could reconjugate with a vegetative cell or with another exconjugant. Exconjugants at an early stage of macronuclear development (oval macronuclear anlagen) did not reconjugate frequently whereas exconjugants at a late stage of macronuclear development (rod-like macronuclear anlagen) reconjugated frequently. In all cases, the micronucleus underwent normal meiosis and other nuclear changes. After reconjugation, a new macronuclear anlage and a new micronucleus were formed normally, so that there were two kinds of macronuclear anlagen in the exconjugants, an old and a new. The old rod-shaped anlage did not disappear after the differentiation of a new one, but it was broken up into several fragments. While the survival rate after normal conjugation was 78%, it was 0–20% after reconjugation. These results suggest that the micronuclei of exconjugants can act as germ nuclei even at a very early stage and that reconjugation, unlike conjugation, is harmful to the cell.  相似文献   

5.
6.
For determination of the effect of K+ on macro- and micronuclear differentiation Paramecium caudatum exconjugants were transferred to medium with various concentrations of Valinomycin and/or K+ at the critical stage of nuclear differentiation. The differentiation was not disturbed by transfer to medium containing 1.5 mM to 50 mM KCl. Injection of KCl solution at the critical stage also did not affect differentiation of the macronucleus appreciably. But change of the KCl concentration in the medium at the critical stage interrupted of normal development of the macronucleus.
Macro- and micronuclear differentiations after conjugation are known to be determined by the antero-posterior localization of postzygotic micronuclei. This nuclear localization is achieved by elongation of mitotic spindles and marked shortening of the cell length at the time of micronuclear division. Successive measurements of cell length at 25°C showed that cells began to shorten 1.5 hr after mating-pair separation, reaching to half the initial length about 2.5 hr after the separation, and then returning to recover their initial length within about 50 min. In a solution of K+ (50 mM) plus Valinomycin (1μg/ml or more), cell shortening was inhibited. It is not known whether elongation of mitotic spindles at the time of critical nuclear division was disordered by this treatment, but the macronuclear anlagen developed in the treated cells. Thus shortening in the cell length is not indispensable for nuclear differentiation.  相似文献   

7.
Histone synthesis and deposition into specific classes of nuclei has been investigated in starved and conjugating Tetrahymena. During starvation and early stages of conjugation (between 0 and 5 hr after opposite mating types are mixed), micronuclei selectively lose preexisting micronuclear-specific histones α, β, γ, and H3F. Of these histones, only α appears to accumulate in micronuclear chromatin through active synthesis and deposition during the mating process. Curiously, α is not observed (by stain or label) in young macronuclear anlagen (4C, 10 hr of conjugation). Thus, young macronuclear anlagen are missing all of the histones which are known to be specific to micronuclei of vegetative cells. By 14–16 hr of conjugation, we observe active synthesis and deposition of macronuclear-specific histones, hv1, hv2, and H1, into new macronuclear anlagen (8C). Thus macronuclear differentiation seems well underway by this time of conjugation. It is also in this time period (14–16 hr) that we first detect significant amounts of micronuclear-specific H1-like polypeptides β and γ in micronuclear extracts. These polypeptides do not seem to be synthesized during this period, which suggests that β and γ are derived from a precursor molecule(s). Since these micronuclear-specific histones do not appear in micronuclear chromatin until after other micronuclei have been selected to differentiate as macronuclei, we suspect that micronuclear differentiation is also an important process which occurs in 10–16 hr mating cells. Our results also suggest that proteolytic processing of micronuclear H3S into H3F (which occurs in a cell cycle dependent fashion during vegetative growth) is not operative during most if not all of conjugation. Thus micronuclei of mating cells contain only H3S which also seems consistent with the fact that some micronuclei differentiate into new macronuclei (micronuclear H3S is indistinguishable from macronuclear H3). Interestingly, the only H3 synthesized and deposited into the former macronucleus of mating cells is the relatively minor macronuclear-specific H3-like variant, hv2. These results demonstrate that significant histone rearrangements occur during conjugation in Tetrahymena in a manner consistent with the fact that during conjugation some micronuclei eventually differentiate into new macronuclei. Our results suggest that selective synthesis and deposition of specific histones (and histone variants) plays an important role in the nuclear differentiation process in Tetrahymena. The disappearance of specific histones also raises the possibility that developmentally regulated proteolytic processing of specific histones plays an important (and previously unsuspected) role in this system.  相似文献   

8.
Macronuclei of Tetrahymena thermophila contain a typical H1 which has been shown to be missing from micronuclei. Instead, micronuclei contain three unique polypeptides, alpha, beta, and gamma, which are associated with linker regions of micronuclear chromatin. In this report polyclonal antibodies raised against macronuclear H1 are shown to react with alpha, beta, and gamma by immunoblotting analyses. This result suggests that these polypeptides share some common structural feature(s). Also consistent with this result is the finding that both macro- and micronuclei in growing and mating cells stain positively with H1 antibodies by in situ indirect immunofluorescence. However, these analyses demonstrate that the level of linker histone is greatly reduced in the micronucleus of starved cells and in young macronuclear anlagen. These results are in agreement with earlier biochemical studies and together provide strong evidence that dramatic changes in linker histone accompany nuclear differentiation (and dedifferentiation) in Tetrahymena.  相似文献   

9.
SYNOPSIS. During conjugation in Spirostomum ambiguum, the micronuclei divide thrice before synkaryon formation and 20 times thereafter. During the first meiotic division 18-24 bivalents, each about 0.5 μ or less appear on the spindle. They separate and pass to the poles. The details of the 2nd and 3rd prezygotic divisions and synkaryon formation by reciprocal exchange of gametic nuclei resemble those described for other ciliates in the literature. The synkaryon divides twice resulting in 4 nuclei; 2 of them become micronuclei and the remaining 2 macronuclear anlagen. The micronuclei enter into division, but this division is arrested in metaphase. The chromosomes in the macronuclear anlagen resemble those appearing in the Ist meiotic division in shape and size. In their maximum stage of development the macronuclear chromosomes are at least 3-4 times larger than those appearing in the arrested micronuclear metaphases in the same cell. There is no banding pattern of the chromosomes and therefore the possible extent of polyteny is difficult to evaluate. The chromosomes duplicate 3-4 times resulting in about 200–250 before they become indistinct as separate entities. Spirostomum is the only nonhypotrichous ciliate in which these cytologic features are described.  相似文献   

10.
During the postzygotic period of the sexual cycle (conjugation) in the ciliated protozoan, Tetrahymena, daughter products from a single micronuclear mitotic division develop into new macronuclei (anlagen) or new micronuclei depending upon their cytoplasmic location. In this study we have monitored the status of histone acetylation in synchronous populations of developing nuclei isolated from conjugating cells. Particular attention has been paid to the level of histone acetylation in new macronuclei following their differentiation from micronuclei. Like micronuclei isolated from vegetative cells (Vavra et al., 1982), micronuclei from conjugating cells (5 hr, 10-12 hr, and 15-16 hr) contain little if any acetylated histone and incorporate little postsynthetic acetate under any of our experimental conditions. In contrast, young new macronuclei (4C, 10-12 hr) incorporate significant amounts of acetate in vitro and in vivo provided that sodium butyrate is included during the labeling period. These results suggest that 4C anlagen contain both active acetylase and deacetylase activities even though the actual steady state level of acetylation found in these nuclei is low, more like that of micronuclei. At later stages of macronuclear maturation (8C, 15-16 hr), inner histones are hyperacetylated in a manner similar to parental, fully differentiated macronuclei. Furthermore, 8C anlagen incorporate acetate well even in the absence of sodium butyrate. Taken together these results suggest that endogenous deacetylase enzymes become either down-regulated and/or the rate of histone acetylases increases markedly during macronuclear differentiation.  相似文献   

11.
A repetitive element from the hypotrichous ciliate Stylonychia lemnae was characterized by restriction and hybridization analysis. This repetitive element is present in about 5,000–7,000 copies per haploid genome in the micronucleus and the macronuclear anlagen. Its DNA sequence is very conserved, but the length of the repetitive sequence blocs is variable. In some cases, it is associated with telomeric sequences and macronucleus–homologous sequences. Restriction analysis of genomic micronuclear and macronuclear anlagen DNA and in situ hybridization showed that the repetitive sequences are amplified during the formation of polytene chromosomes. They are localized in many bands of the polytene chromosomes and are eliminated during the degradation of the polytene chromosomes. Possible functions of the repetitive sequences during macronuclear differentiation are discussed. Dev. Genet. 21:201–211, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

12.
Mass cultures of a stock of Paramecium polycaryum maintained over a period of several years showed abundant and frequent nuclear reorganization stages resembling those of ex-conjugant and ex-autogamous animals of other species of Paramecium. Conjugation has never been reported for P. polycaryum, nor has it been found in these studies. Cytological examination of stained preparations revealed a process of autogamy in P. polycaryum, closely similar to that described previously for P. aurelia. As a rule, all four of the micronuclei, the typical vegetative number in P. polycaryum, engage in the first prezygotic division which is characterized by the formation of prophase crescents. Variable numbers of the eight nuclei continue with the second division. A maximum of sixteen nuclei may result. Apparently, only one of these normally completes the third prezygotic division to form the gametic nuclei, although more than one may initiate it. A fusion nucleus (synkaryon) arises in, or near, a paroral cone, thus paralleling autogamy in P. aurelia. A series of postzygotic divisions produces eight definitive nuclei, four of which become macronuclear anlagen and four remain micronuclei. The first division of the synkaryon results, possibly, in the formation of a viable nucleus and a non-viable one, as in ex-conjugants of P. caudatum. After the last micronuclear division, a skein evolves from the old macronucleus which has become flattened and leaf-like. The skein rapidly segments into "sausages" which transform into spherical fragments, about thirty in number. Two cell divisions restore the normal vegetative nuclear complex.  相似文献   

13.
The germ nuclei (micronuclei) of Paramecium tetraurelia can be eliminated successfully by irradiating the micronucleus with an argon-ion laser microbeam after sensitization with the dye acridine orange. No immediate cytological damage of the irradiated micronuclei is visible, but they are lost before they enter the next division. This method produces cell lines lacking micronuclei (i.e., amicronucleates). These amicronucleates provide favorable materials for the study of micronuclear functions as well as intra-and inter-specific nucleocytoplasmic interactions. Some preliminary observations show that the micronucleus is not required for macronuclear fragmentation and macronuclear regeneration during sexual reproduction, but suggest that the micronucleus might participate in some asexual cellular function in addition to their gametic role.  相似文献   

14.
During Tetrahymena conjugation gamic nuclei (pronuclei) are produced, reciprocally exchanged, and fused in each mate. The synkaryon divides twice; the two anterior nuclei develop into new macronuclei while the two posterior nuclei become micronuclei. The postzygotic divisions were blocked with the antitubulin drug nocodazole (ND). Then pronuclei (gamic nuclei) developed directly into macronuclear anlagen (primordial macronuclei), inducing amicronucleate cells with two anlagen, or, rarely, cells with one anlagen and one micronucleus. ND had a similar effect on cells that passed the first postzygotic division inducing amicronucleate cells with two anlagen, while cells treated with ND at the synkarya stage produced only one large anlage. Different intracytoplasmic positioning of the nuclei treated with ND (pronuclei, synkarya and two products of the first division) shows that most of cell cytoplasm is competent for inducing macronuclear development. Only posteriorly positioned nuclei--products of the second postzygotic division--remain micronuclei. The total cell DNA content, measured cytophotometrically in control and in ND-induced amicronucleate conjugant cells with one and two anlagen, was similar in all three samples at 12 h of conjugation. Eventually, at 24 h this content was about 2 pg (8 C) per anlagen both in nonrefed control and in amicronucleate exconjugants. Therefore "large" nuclei developing in the presence of ND were true macronuclear anlagen.  相似文献   

15.
In conjugating pairs of Paramecium caudatum, the micronuclear events occur synchronously in both members of the pair. To find out whether micronuclear behavior is controlled by the somatic macronucleus or by the germinal micronucleus, and whether or not synchronization of micronuclear behavior is due to intercellular communication between conjugating cells, the behavior of the micronucleus was examined after removal of the macronuclei from either or both cells of a mating pair at various stages of conjugation. When macronuclei were removed from both cells of a pair, micronuclear development was arrested 1 to 1.5 hr after macronuclear removal. When the macronucleus of a micronucleate cell mating with an amicronucleate cell was removed later than 3 to 3.5 hr of conjugation, that is, an early stage of meiotic prophase of the micronucleus, micronuclear events occurred normally in the operated cell. These results suggest that most micronuclear events are under the control of the macronucleus and that the gene products provided by the macronucleus are transferable between mating cells. One such product is required for induction of micronuclear division and is provided just before metaphase of the first meiotic division of the micronucleus. This factor is effective at a lower concentration in the cytoplasm and/or is more transferable between mating cells than the factors required for other stages. This factor, which seems to be present at least until the stage of micronuclear disintegration, is able to induce repeated micronuclear division as long as it remains active. The factor can act on a micronucleus which has not passed through a meiotic prophase. Moreover, the results suggest the existence of a second factor which is provided by the macronucleus after the first meiotic division that inhibits further micronuclear division.  相似文献   

16.
It has been known that, immediately after the third division of fertilization nucleus (synkaryon), nuclei localized near the posterior region of exconjugant are to be macronuclear anlagen and those near the anterior region are to be presumptive micronuclei in Paramecium caudatum. One of such posterior nuclei was transplanted into amicronucleate cell at vegetative phase in this work. The implanted nuclei were able to divide at every fission. Their DNA content was nearly equal to or less than ordinary micronuclei during vegetative phase. When conjugation was induced between clones obtained and amicronucleates, macronuclear anlagen developed from the division products of implanted nuclei and thereafter derivative caryonides were true to the marker gene of implanted nuclei. The results indicate that there was no intrinsic difference between nuclei localized anteriorly and those situated posteriorly in exconjugant. Differentiation of nuclei into macronucleus may be irreversible at the stage of anteroposterior localization of the nuclei. The role of nuclear division in differentiation may be only to transport the daughter nuclei into the cytoplasm/cortex differentiated anteroposteriorly.  相似文献   

17.
Mating Tetrahymena thermophila were bombarded with ribosomal DNA-coated particles at various times in development. Both macronuclear and micronuclear transformants were recovered. Optimal developmental stages for transformation occurred during meiosis for the micronucleus and during anlagen formation for the macronucleus. Evidence is given for transient retention of the introduced plasmid. Genetic and molecular tests confirmed that sexually heritable transformation was associated with integration at the homologous site in the recipient micronuclear chromosome.  相似文献   

18.
Isolated nuclei of Tetrahymena thermophila from both exponentially growing cultures and from cells following conjugation have been analysed using a flow microfluorimeter. The macronuclei from a culture in exponential growth display a single broad distribution of DNA contents, without bimodal character. The micronuclei are virtually all in G2 phase (4C). The mean of the macronuclear DNA distribution is about 12.4 times the micronuclear mean (50C). When cells are starved in preparation for conjugation, the macronuclei DNA content is decreased about 30%, but the distribution remains similar to that of nuclei from a culture in exponential growth. Following conjugation, the macronuclear anlagen develop through a set of relatively synchronous endoreplications. At 12 h after the initiation of conjugation the anlagen are at a 4C stage and at 18 h they are virtually all at a 8C stage. If the culture is refed, anlagen development progresses to a 16C and 32C, but the synchrony is poorly conserved. Cells that are not refed are arrested at the 8C stage and only a fraction of the population ever become mature macronuclei. In general we do not observe distinct peaks of anlagen with DNA contents in excess of 32C. The amitotic division of macronuclei may obscure any endoreplications producing anlagen stages with higher DNA content.  相似文献   

19.
Nuclear reorganization, which results in the differentiation between macronuclear anlagen and micronuclei during autogamy or conjugation in Paramecium tetraurelia, was compared in wild-type cells and in two mutants, mic44 and kin241, which form abnormal numbers of macronuclear anlagen and micronuclei. Our observations show that all macronuclear anlagen derive from the nuclei positioned at the posterior pole of the cell at the second postzygotic division. This posterior localization is transient and correlated with a marked change in cell shape and decrease of cell length. These results suggest that cytoplasmic or cortical factors precisely located in the posterior pole are essential to trigger macronuclear differentiation and that the control of nuclear positioning is dependent upon precise modifications of cell shape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号