首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of breeding systems results from the existence of genetic variation and selective forces favoring different outcrossing rates. In this study we determine the extent of genetic variation for characters directly related to outcrossing, such as male frequency, male mating ability, and male reproductive success, in several wild isolates of the nematode Caenorhabditis elegans. This species is characterized by an androdioecious breeding system in which males occur with hermaphrodites that can either self-fertilize or outcross with males. We find genetic variation for all characters measured, but also find that environmental variation is a large fraction of the total phenotypic variance. We further determine the existence of substantial genetic variation for population competitive performance in several laboratory environments. However, these measures are uncorrelated with outcrossing characters. The data presented here contribute to an understanding of male maintenance in natural populations through their role in outcrossing.  相似文献   

2.
Abruzzi KC  Magendantz M  Solomon F 《Genetics》2002,160(3):983-994
The free-living nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, yet males are maintained in wild-type populations at low frequency. To determine the role of males in C. elegans, we develop a mathematical model for the genetic system of hermaphrodites that can either self-fertilize or be fertilized by males and we perform laboratory observations and experiments on both C. elegans and a related dioecious species C. remanei. We show that the mating efficiency of C. elegans is poor compared to a dioecious species and that C. elegans males are more attracted to C. remanei females than they are to their conspecific hermaphrodites. We postulate that a genetic mutation occurred during the evolution of C. elegans hermaphrodites, resulting in the loss of an attracting sex pheromone present in the ancestor of both C. elegans and C. remanei. Our findings suggest that males are maintained in C. elegans because of the particular genetic system inherited from its dioecious ancestor and because of nonadaptive spontaneous nondisjunction of sex chromosomes, which occurs during meiosis in the hermaphrodite. A theoretical argument shows that the low frequency of male mating observed in C. elegans can support male-specific genes against mutational degeneration. This results in the continuing presence of functional males in a 99.9% hermaphroditic species in which outcrossing is disadvantageous to hermaphrodites.  相似文献   

3.
BACKGROUND: Caenorhabditis elegans is a major model system in biology, yet very little is known about its biology outside the laboratory. In particular, its unusual mode of reproduction with self-fertile hermaphrodites and facultative males raises the question of its frequency of outcrossing in natural populations. RESULTS: We describe the first analysis of C. elegans individuals sampled directly from natural populations. C. elegans is found predominantly in the dauer stage and with a very low frequency of males versus hermaphrodites. Whereas C. elegans was previously shown to display a low worldwide genetic diversity, we find by comparison a surprisingly high local genetic diversity of C. elegans populations; this local diversity is contributed in great part by immigration of new alleles rather than by mutation. Our results on heterozygote frequency, male frequency, and linkage disequilibrium furthermore show that selfing is the predominant mode of reproduction in C. elegans natural populations but that infrequent outcrossing events occur, at a rate of approximately 1%. CONCLUSIONS: Our results give a first insight in the biology of C. elegans in the natural populations. They demonstrate that local populations of C. elegans are genetically diverse and that a low frequency of outcrossing allows for the recombination of these locally diverse genotypes.  相似文献   

4.
Sexual reproduction shuffles genetic variation, potentially enhancing the evolutionary response to environmental change. Many asexual organisms respond to stress by generating facultative sexual reproduction, presumably as a means of escaping the trap of low genetic diversity. Self-fertilizing organisms are subject to similar genetic limitations: the consistent loss of genetic diversity within lineages restricts the production of variation through recombination. Selfing organisms may therefore benefit from a similar shift in mating strategy during periods of stress. We determined the effects of environmental stress via starvation and passage through the stress-resistant dauer stage on mating system dynamics of Caenorhabditis elegans , which reproduces predominantly through self-fertilization but is capable of outcrossing in the presence of males. Starvation elevated male frequencies in a strain-specific manner through differential male survival during dauer exposure and increased outcrossing rates after dauer exposure. In the most responsive strain, the mating system changed from predominantly selfing to almost exclusively outcrossing. Like facultative sex in asexual organisms, facultative outcrossing in C. elegans may periodically facilitate adaptation under stress. Such a shift in reproductive strategy should have a major impact on evolutionary change within these populations and may be a previously unrecognized feature of other highly selfing organisms.  相似文献   

5.
An understanding of the forces that contribute to the phylogenetically widespread phenomenon of sexual reproduction has posed a longstanding problem in evolutionary biology. Mutational theories contend that sex can be maintained when the deleterious mutation rate is sufficiently high, although empirical evidence is equivocal and experimental studies are rare. To test the influence of mutation on the evolution of obligate outcrossing, I introduced a genetic polymorphism for breeding system into populations of the nematode Caenorhabditis elegans with high- and low-mutation rate genetic backgrounds and tracked the change in frequency of females, hermaphrodites, and males over approximately 21 generations. Hermaphrodites invaded all populations, regardless of mutational background. However, experimental populations with elevated mutation rates experienced more outcrossing and greater retention of females. This provides experimental evidence consistent with deleterious mutational explanations for the evolution of sex in principle, but the action of other processes is required to explain the evolution of sex in entirety.  相似文献   

6.
Abstract. The expected proportion of males in androdioecious populations (those comprised of males and hermaphrodites) largely depends on the fertilization opportunities of males. If male mating opportunities are low due to restricted access to hermaphroditic eggs, then populations will be hermaphrodite-biased. Hermaphrodites have two mechanisms available to limit male mating success: (1) pre-mating barriers to outcrossing, in which hermaphrodites choose not to pair with males and (2) post-mating barriers to outcrossing, in which hermaphrodite sperm has greater access to eggs than male sperm. In this study, we measured male mating success in the androdioecious clam shrimp Eulimnadia texana when pre-mating barriers to outcrossing were removed. These branchiopod crustaceans are small (5–8 mm), filter feeders that live in ephemeral pools in the deserts of the southwestern United States. Using genetic markers, we measured male mating success in laboratory experiments in two populations of these shrimp. We correlated mating success with clasping time, clasping during egg transfer, and male thrusting during egg transfer. Males fertilized an average of 24–40% of the hermaphrodites' eggs. Outcrossing success was positively correlated with clasping duration, and was nearly an order of magnitude higher for males thrusting during egg transfer relative to thrusting at other times during pairing. Because these estimates of mating success were similar to previously reported estimates (in which both pre- and post-mating barriers to outcrossing were potentially important), we deduced that pre-mating barriers to outcrossing do not greatly decrease male outcrossing success in E. texana ; the low fertilization (25–50% of available eggs) by males is thus due to post-mating barrier(s) to outcrossing.  相似文献   

7.
Polyploids and Sex Determination in CAENORHABDITIS ELEGANS   总被引:2,自引:0,他引:2       下载免费PDF全文
Tetraploid stocks of Caenorhabditis elegans var. Bristol carrying autosomal and X-linked markers have been produced. Tetraploid hermaphrodites fall into two categories: those that give about 1% male self-progeny and those that give 25 to 40% male self-progeny. The former are basically 4A;4X--four sets of autosomes and four sex chromosomes--and the latter are 4A;3X. Males are 4A;2X. (Diploid hermaphrodites are 2A;2X; males are 2A;1X.) Triploids were produced by crossing tetraploid hermaphrodites and diploid males. Triploids of composition 3A;3X are hermaphrodites; 3A;2X animals are fertile males. Different X-chromosome duplications were added to a 3A;2X chromosome constitution to increase the X-to-autosome ratio. Based on the resulting sexual phenotypes, we conclude that there exists on the C. elegans X chromosome at least three (and perhaps many more) dose-sensitive sites that act cumulatively in determining sex.  相似文献   

8.
Despite a nearly worldwide distribution in nature, Caenorhabditis elegans exhibits low levels of genetic polymorphism, possibly as an indirect consequence of low levels of outcrossing. In the laboratory, Caenorhabditis elegans males are produced at low rates and are steadily eliminated from cultures, so that reproduction happens largely through self-fertilization in hermaphrodites. C. elegans is increasingly the focus of evolutionary research; however, natural outcrossing rates are difficult to measure because mating tests with laboratory strains are usually required to identify C. elegans. We sampled natural populations of C. elegans with an RNA interference (RNAi) assay. Heterozygosities and polymorphism patterns revealed surprisingly high levels of population structure and outcrossing (approximately 22% of individuals are estimated to be the result of outcrossing and not self-fertilization). The finding of strong local population structure, together with low levels of diversity on local and global scales, suggests a metapopulation model of frequent extinction and recolonization of local populations. The occurrence of substantial outcrossing suggests that the extinction of local populations is probably not driven by the accumulation of harmful mutations.  相似文献   

9.
Stewart AD  Phillips PC 《Genetics》2002,160(3):975-982
Caenorhabditis elegans is an androdioecious nematode composed of selfing hermaphrodites and rare males. A model of male maintenance demonstrates that selfing rates in hermaphrodites cannot be too high or else the frequency of males will be driven down to the rate of spontaneous nondisjunction of the X chromosome. After their outcrossing ability is assessed, males are found to skirt the frequency range in which they would be maintained. When male maintenance is directly assessed by elevating male frequency and observing the frequency change through time, males are gradually eliminated from the population. Males, therefore, appear to reproduce at a rate just below that necessary for them to be maintained. Populations polymorphic for a mutation (fog-2) that effectively changes hermaphrodites into females demonstrate that there is strong selection against dioecy. Factors such as variation in male mating ability and inbreeding depression could potentially lead to the long-term maintenance of males.  相似文献   

10.
Models of mating-system evolution emphasize the importance of frequency-dependent interactions among mating partners. It is also known that outcross siring success and the selfing rate in self-compatible hermaphrodites can be density dependent. Here, we use array experiments to show that the mating system (i.e., the outcrossing rate) and the siring success of morphs with divergent sex allocation strategies are both density dependent and frequency dependent in androdioecious populations of the wind-pollinated, annual plant Mercurialis annua. In particular, the outcrossing rate is a decreasing function of the mean interplant distance, regulated by a negative exponential pollen fall-off curve. Our results indicate that pollen dispersed from a male inflorescence are over 60% more likely to sire outcrossed progeny than equivalent pollen dispersed from hermaphrodites, likely due to the fact that males, but not hermaphrodites, disperse their pollen from erect inflorescence stalks. Because of this difference, and because males of M. annua produce much more pollen than hermaphrodites, the presence of males in the experimental arrays reduced both the selfing rate and the outcross siring success of hermaphrodites. We use our results to infer a density threshold below which males are unable to persist with hermaphrodites but above which they can invade hermaphroditic populations. We discuss our findings in the context of a metapopulation model, in which males can only persist in well-established populations but are excluded from small, sparse populations, for example, in the early stages of colonization.  相似文献   

11.
1. Aquatic invertebrates display a wide array of alternative reproductive modes from apomixis to hermaphroditism and cyclical parthenogenesis. These have important effects on genetic diversity and population structure. Populations of the 'living fossil' Triops cancriformis display a range of sex ratios, and various reproductive modes are thought to underlie this variation. Using sex ratio information and histological analyses European populations have been inferred to be gonochoric (with separate males and females), selfing hermaphroditic and androdioecious, a rare reproductive mode in which selfing hermaphrodites coexist with variable proportions of males. In addition, some populations have been described as meiotic parthenogens.
2. Here we use population genetic analysis using microsatellite loci in populations with a range of sex ratios including a gonochoric population, and marker segregation patterns in heterozygote individuals reared in isolation, to clarify the reproductive mode in this species.
3. Our data show that populations in general have very low levels of genetic diversity. Non-gonochoric populations show lower genetic diversity, more heterozygote deficiencies, higher inbreeding coefficients and stronger linkage disequilibria than the gonochoric population. The maintenance of some heterozygosity in populations is consistent with some male influence in T. cancriformis populations, as would be expected from an androdioecious reproductive system. Results of marker segregation in eggs produced in isolation from non-gonochoric populations indicate that meiosis occurs and are consistent with two reproductive modes: selfing hermaphroditism and a type of ameiotic parthenogenesis.
4. Overall, our data indicate that androdioecy and selfing hermaphroditism are the most likely reproductive modes of non-gonochoric European Triops populations. Triops populations are strongly structured, suggesting high genetic drift and low levels of gene flow.  相似文献   

12.
秀丽隐杆线虫的性别包括自体受精的雌雄同体以及可以与雌雄同体交配的雄性,实验室培养的线虫种群中雄性比例很低,目前尚未发现雌雄同体与雄性线虫杂交后代的遗传优势.为了探讨雄性线虫个体存在的生态意义,本研究比较了热胁迫下两性线虫的生活史变化,以及有无雄性存在的线虫种群应对热胁迫的耐受程度.结果表明:虽然雄性线虫对热胁迫更为敏感,然雨当有雄性存在的情况下,整个线虫种群数量在热胁迫后得以更快地恢复,而且与常温培养相比,经常受到热胁迫的线虫种群中雄性的比例可维持在一个较高的水平.这些结果暗示,在多变的自然状态下,秀丽隐杆线虫雄性性别的保留对种群数量的维持有重要的进化意义.  相似文献   

13.
Postcopulatory sexual selection affects the evolution of numerous features ranging from mating behavior to seminal fluid toxicity to the size of gametes. In an earlier study of the effect of sperm competition risk on sperm size evolution, experimental populations of the nematode Caenorhabditis elegans were maintained either by outcrossing (sperm competition present) or by selfing (no sperm competition), and after 60 generations, significantly larger sperm had evolved in the outcrossing populations. To determine the effects of this selection on population genetic variation, we assessed genetic diversity in a large number of loci using random amplification of polymorphic DNA-PCR. Nearly 80% of the alleles present in parental strain populations persisted in the 6 experimental populations after the 60 generations and, despite a 2.2-fold difference in expected heterozygosity, the resulting levels of genetic variation were equivalent between the outcrossing and selfing experimental populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental populations dramatically reduced genetic diversity. We use the levels of variation in the selfing populations as a control for the effects of drift, and estimate the strength of sexual selection to be strong in obligatorily outcrossing populations. Although sequential hermaphrodites like C. elegans probably experience little sexual selection in nature, these data suggest that sexual selection can profoundly affect diversity in outcrossing taxa.  相似文献   

14.
The primary sex-determining signal in Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio), normally 1.0 in hermaphrodites (XX) and 0.5 in males (XO). XX triploids (X/A = 0.67) are males, but if these animals carry a partial duplication of the X chromosome such that X/A approximately equal to 0.7, they develop as intersexes that are sexually mosaic. We have analyzed these mosaics using Nomarski microscopy and in situ hybridization to obtain information on whether sex determination decisions can be made independently in different cells and tissues, and when these commitments are made. The observed patterns of male and female cells in individual animals indicate that sex determination decisions can be influenced by anterior-posterior position and that sex determination decisions can be made as late as the third larval stage of postembryonic development. Although these decisions clearly can be made independently in different lineages, they show substantial biases toward one sex or the other in individual animals. We interpret these results to suggest that sex determination in C. elegans is not entirely cell autonomous.  相似文献   

15.
Rare Caenorhabditis elegans males arise when sex chromosome non-disjunction occurs during meiosis in self-fertilizing hermaphrodites. Non-disjunction is a relatively rare event, and males are typically observed at a frequency of less than one in five hundred wild-type animals. Males are required for genetic crosses and phenotypic analysis, yet current methods to generate large numbers of males can be cumbersome. Here, we identify RNAi reagents (dsRNA-expressing bacteria) with improved effectiveness for eliciting males. Specifically, we used RNAi to systematically reduce the expression of over two hundred genes with meiotic chromosome segregation functions, and we identified a set of RNAi reagents that robustly and reproducibly elicited male progeny.  相似文献   

16.
Morsci NS  Haas LA  Barr MM 《Genetics》2011,189(4):1341-1346
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.  相似文献   

17.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

18.

Background

Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.

Results

We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.

Conclusions

Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
  相似文献   

19.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

20.
Androdioecy, coexistence of hermaphrodites and males, is an extremely rare breeding system in angiosperms. In the present study, Schizopepon bryoniaefolius (Cucurbitaceae) was confirmed to be functionally androdioecious based on observations of floral and pollen morphology and bagging experiments. Six out of the 11 studied populations consisted of only hermaphrodites, while the other five populations were androdioecious and the frequencies of males were consistently lower than those of hermaphrodites (5.5–28.3%). To understand the consequences of an androdioecious breeding system, genetic variation was estimated using four polymorphic allozyme loci. The degree of genetic differentiation among 11 populations was high (GST = 0.688). Inbreeding coefficients (FIS) for all loci significantly deviated from zero. In particular, the FIS values averaged across the polymorphic loci in hermaphrodite populations were close to unity, suggesting that hermaphrodites are predominantly selfing in the absence of males. A significant negative correlation was found between the frequencies of males and inbreeding coefficients, indicating that outcrossing rates depend on the population sex ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号