首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

2.
Fission yeast p56(chk1) kinase is known to be involved in the DNA damage checkpoint but not to be required for cell cycle arrest following exposure to the DNA replication inhibitor hydroxyurea (HU). For this reason, p56(chk1) is considered not to be necessary for the DNA replication checkpoint which acts through the inhibitory phosphorylation of p34(cdc2) kinase activity. In a search for Schizosaccharomyces pombe mutants that abolish the S phase cell cycle arrest of a thermosensitive DNA polymerase delta strain at 37 degrees C, we isolated two chk1 alleles. These alleles are proficient for the DNA damage checkpoint, but induce mitotic catastrophe in several S phase thermosensitive mutants. We show that the mitotic catastrophe correlates with a decreased level of tyrosine phosphorylation of p34(cdc2). In addition, we found that the deletion of chk1 and the chk1 alleles abolish the cell cycle arrest and induce mitotic catastrophe in cells exposed to HU, if the cells are grown at 37 degrees C. These findings suggest that chk1 is important for the maintenance of the DNA replication checkpoint in S phase thermosensitive mutants and that the p56(chk1) kinase must possess a novel function that prevents premature activation of p34(cdc2) kinase under conditions of impaired DNA replication at 37 degrees C.  相似文献   

3.
Fission yeast cells expressing the human gene encoding the cyclin-dependent kinase inhibitor protein p21Cip1 were severely compromised for cell cycle progress. The degree of cell cycle inhibition was related to the level of p21Cip1 expression. Inhibited cells had a 2C DNA content and were judged by cytology and pulsed field gel electrophoresis to be in the G2 phase of the cell cycle. p21Cip1 accumulated in the nucleus and was associated with p34cdc2 and PCNA. Thus, p21Cip1 interacts with the same targets in fission yeast as in mammalian cells. Elimination of p34cdc2 binding by mutation within the cyclin-dependent kinase binding domain of p21Cip1 exaggerated the cell cycle delay phenotype. By contrast, elimination of PCNA binding by mutation within the PCNA-binding domain completely abolished the cell cycle inhibitory effects. Yeast cells expressing wild-type p21Cip1 and the mutant form that is unable to bind p34cdc2 showed enhanced sensitivity to UV. Cell cycle inhibition by p21Cip1 was largely abolished by deletion of the chk1+ gene that monitors radiation damage and was considerably enhanced in cells deleted for the rad3+ gene that monitors both DNA damage and the completion of DNA synthesis. Overexpression of PCNA also resulted in cell cycle arrest in G2 and this phenotype was also abolished by deletion of chk1+ and enhanced in cells deleted for rad3+. These results formally establish a link between PCNA and the products of the rad3+ and chk1+ checkpoint genes.  相似文献   

4.
Calonge TM  O'Connell MJ 《Genetics》2006,174(1):113-123
Activation of the Chk1 protein kinase by DNA damage enforces a checkpoint that maintains Cdc2 in its inactive, tyrosine-15 (Y15) phosphorylated state. Chk1 downregulates the Cdc25 phosphatases and concomitantly upregulates the Wee1 kinases that control the phosphorylation of Cdc2. Overproduction of Chk1 causes G(2) arrest/delay independently of DNA damage and upstream checkpoint genes. We utilized this to screen fission yeast for mutations that alter sensitivity to Chk1 signaling. We describe three dominant-negative alleles of cdr1, which render cells supersensitive to Chk1 levels, and suppress the checkpoint defects of chk1Delta cells. Cdr1 encodes a protein kinase previously identified as a negative regulator of Wee1 activity in response to limited nutrition, but Cdr1 has not previously been linked to checkpoint signaling. Overproduction of Cdr1 promotes checkpoint defects and exacerbates the defective response to DNA damage of cells lacking Chk1. We conclude that regulation of Wee1 by Cdr1 and possibly by related kinases is an important antagonist of Chk1 signaling and represents a novel negative regulation of cell cycle arrest promoted by this checkpoint.  相似文献   

5.
X S Ye  R R Fincher  A Tang    S A Osmani 《The EMBO journal》1997,16(1):182-192
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.  相似文献   

6.
The Cdc2 protein kinase is a key regulator of the G1-S and G2-M cell cycle transitions in the fission yeast Schizosaccharomyces pombe. The activation of Cdc2 at the G2-M transition is triggered by dephosphorylation at a conserved tyrosine residue Y15. The level of Y15 phosphorylation is controlled by the Wee1 and Mik1 protein kinases acting in opposition to the Cdc25 protein phosphatase. Here, we demonstrate that Wee1 overexpression leads to a high stoichiometry of phosphorylation at a previously undetected site in S. pombe Cdc2, T14. T14 phosphorylation was also detected in certain cell cycle mutants blocked in progression through S phase, indicating that T14 phosphorylation might normally occur at low stoichiometry during DNA replication or early G2. Strains in which the chromosomal copy of cdc2 was replaced with either a T14A or a T14S mutant allele were generated and the phenotypes of these strains are consistent with T14 phosphorylation playing an inhibitory role in the activation of Cdc2 as it does in higher eukaryotes. We have also obtained evidence that Wee1 but not Mik1 or Chk1 is required for phosphorylation at this site, that the Mik1 and Chk1 protein kinases are unable to drive T14 phosphorylation in vivo, that residue 14 phosphorylation requires previous phosphorylation at Y15, and that the T14A mutant, unlike Y15F, is recessive to wild-type Cdc2 activity. Finally, the normal duration of G2 delay after irradiation or hydroxyurea treatment in a T14A mutant strain indicates that T14 phosphorylation is not required for the DNA damage or replication checkpoint controls.  相似文献   

7.
J Hayles  P Nurse 《The EMBO journal》1995,14(12):2760-2771
We have monitored the tyrosine (Y15) phosphorylated and dephosphorylated forms of p34cdc2 from Schizosaccharomyces pombe as cells proceed through the cell cycle. Y15 is dephosphorylated in G1 before start and becomes phosphorylated only after cells pass start and enter late G1. This transition is associated with a switch from one checkpoint which restrains mitosis in pre-start G1, by a mechanism independent from Y15 phosphorylation, to a second checkpoint acting post-start during late G1 and S phase operating through Y15 phosphorylation. The pre-start checkpoint may act by preventing formation of the p34cdc2/p56cdc13 complex. The complex between Y15-phosphorylated p34cdc2 and p56cdc13 accumulates during S phase and G2, but the level generated is not solely dependent on the amount of p34cdc2 and p56cdc13 present in the cell. The extent of p56cdc13 breakdown at the end of mitosis may be determined by the amount complexed with p34cdc2. We have also shown that an insoluble form of p34cdc2 is associated with the progression of the cell through late G1 into S phase.  相似文献   

8.
The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened for genes in Schizosaccharomyces pombe that, when overexpressed, result in precocious mitotic entry in the presence of DNA damage. We show that overexpression of the type I protein phosphatase Dis2 sensitises S. pombe cells to DNA damage, causing aberrant mitoses. Dis2 abrogates Chk1 phosphorylation and activation in vivo, and dephosphorylates Chk1 and a phospho-S345 Chk1 peptide in vitro. dis2Delta cells have a prolonged chk1-dependent arrest and a compromised ability to downregulate Chk1 activity for checkpoint release. These effects are specific for the DNA damage checkpoint, because Dis2 has no effect on the chk1-independent response to stalled replication forks. We propose that inactivation of Chk1 by Dis2 allows mitotic entry following repair of DNA damage in the G2-phase.  相似文献   

9.
The cell cycle is regulated by pathways composed of a dependent series of steps, by timers, and by checkpoint controls which ensure the completion of one event before the initiation of another. This review focuses on the regulation of the initiation of mitosis, with particular emphasis on the regulation of p34cdc2 activity at this point in the cell cycle. The review draws on data from various organisms, but strongly emphasizes the genetic framework as seen in the fission yeast Schizosaccharomyces pombe and the biology and biochemistry of maturation promoting factor in frog oocytes. An attempt is made to include all known genes and proteins where a link can be made to the initiation event. The nutritional size control and its major known controlling elements, the wee1/mik1 protein kinases, and cdc25 protein tyrosine phosphatase are considered in detail along with their regulation. In addition, the checkpoint control pathways which mediate G2 delay in response to failure of DNA replication or DNA damage are examined.  相似文献   

10.
Successful recovery from DNA damage requires coordination of several biological processes. Eukaryotic cell cycle progression is delayed when the cells encounter DNA-damaging agents. This cell cycle delay allows the cells to cope with DNA damage by utilizing DNA repair enzymes. Thus, at least two processes, induction of the cell cycle delay and repair of damaged DNA, are coordinately required for recovery. In this study, a fission yeast rad mutant (slp1-362) was genetically investigated. In response to radiation, slp1 stops cell division; however, it does not restart it. This defect is suppressed when slp1-362 is combined with wee1-50 or cdc2-3w; in these mutants, the onset of mitosis is advanced due to the premature activation of p34cdc2. In contrast, slp1 is synthetically lethal with cdc25, nim1/cdr1, or cdr2, all of which are unable to activate the p34cdc2 kinase correctly. These genetic interactions of slp1 with cdc2 and its modulators imply that slp1 is not defective in either "induction of cell cycle delay" or "DNA repair." slp1+ may be involved in a critical process which restarts cell cycle progression after the completion of DNA repair. Molecular cloning of slp1+ revealed that slp1+ encodes a putative 488-amino-acid polypeptide exhibiting significant homology to WD-domain proteins, namely, CDC20 (budding yeast), p55CDC (human), and Fizzy (fly). A possible role of slp1+ is proposed.  相似文献   

11.
The regulation of p34cdc2 was investigated by overproducing p34cdc2, cyclin (A and B) and the wee1+ gene product (p107wee1) using a baculoviral expression system. p34cdc2 formed a functional complex with both cyclins as judged by co-precipitation, phosphorylation of cyclin in vitro, and activation of p34cdc2 histone H1 kinase activity. Co-production of p34cdc2 and p107wee1 in insect cells resulted in a minor population of p34cdc2 that was phosphorylated on tyrosine and displayed an altered electrophoretic mobility. When p34cdc2 and p107wee1 were co-produced with cyclin (A or B) in insect cells, there was a dramatic increase in the population of p34cdc2 that was phosphorylated on tyrosine and that displayed a shift in electrophoretic mobility. The phosphorylation of p34cdc2 on tyrosine was absolutely dependent upon the presence of kinase-active p107wee1. Tyrosine-specific as well as serine/threonine-specific protein kinase activities co-immunoprecipitated with p107wee1. These results suggest that cyclin functions to facilitate tyrosine phosphorylation of p34cdc2 and that p107wee1 functions to regulate p34cdc2, either directly or indirectly, by tyrosine phosphorylation.  相似文献   

12.
The cdc2 protein kinase, first identified as a cell cycle gene required for transition into the S- and M-phases of budding and fission yeast, has been shown to act as a key component in the regulation of the eukaryotic cell cycle. The periodic activation of cdc2 kinase, which is required for entry into M-phase, is regulated by subunit association with cyclin B, the cdc25, wee1, mik1 gene products and differential phosphorylation of the cdc2 protein. Phosphorylation at Tyr 15 inhibits activation of the cdc2/cdc13 complex whereas phosphorylation of Thr 167 is required for kinase activity.  相似文献   

13.
Although the G2/M DNA damage checkpoint is currently viewed as a set of coordinated cellular responses affecting both cell cycle progression and non-cell cycle targets, the relative contributions of the two target categories to DNA repair and cell survival after exposure to ionizing radiation have not been clearly addressed. We investigated how rad3 (ATR ortholog) or chk1/cds1 (CHK1/CHK2 orthologs) null mutations change the kinetics of double-strand break (DSB) repair in Schizosaccharomyces pombe cells under conditions of forced G2 arrest. After 200-Gy γ-ray irradiation, DSBs were repaired in rad3Δ cdc25-22 or chk1Δ cds1Δ cdc25-22 cells, almost as efficiently as in cdc25-22 cells at the restrictive temperature. In contrast, little repair was observed in the checkpoint-deficient cells up to 4h after higher-dose (500Gy) irradiation, whereas repair was still efficient in the control cdc25-22 cells. Immediate loss of viability appeared not be responsible for the repair defect after the higher dose, since both checkpoint-proficient and deficient cells with cdc25-22 allele synchronously resumed cycling with a similar time course when released to the permissive temperature 4h after irradiation. Recruitment of repair proteins Rad11 (Rpa1 ortholog), Rad22 (Rad52 ortholog), and Rhp54 (Rad54 ortholog) to the damage sites was not significantly impaired in the checkpoint-deficient cells, whereas their release was profoundly delayed. Our results suggest that sensor and effector kinases in the damage checkpoint machinery affect the efficiency of repair downstream of, or in parallel with the core repair reaction.  相似文献   

14.
Control of Swe1p degradation by the morphogenesis checkpoint.   总被引:22,自引:0,他引:22       下载免费PDF全文
R A Sia  E S Bardes    D J Lew 《The EMBO journal》1998,17(22):6678-6688
In the budding yeast Saccharomyces cerevisiae, a cell cycle checkpoint coordinates mitosis with bud formation. Perturbations that transiently depolarize the actin cytoskeleton cause delays in bud formation, and a 'morphogenesis checkpoint' detects the actin perturbation and imposes a G2 delay through inhibition of the cyclin-dependent kinase, Cdc28p. The tyrosine kinase Swe1p, homologous to wee1 in fission yeast, is required for the checkpoint-mediated G2 delay. In this report, we show that Swe1p stability is regulated both during the normal cell cycle and in response to the checkpoint. Swe1p is stable during G1 and accumulates to a peak at the end of S phase or in early G2, when it becomes unstable and is degraded rapidly. Destabilization of Swe1p in G2 and M phase depends on the activity of Cdc28p in complexes with B-type cyclins. Several different perturbations of actin organization all prevent Swe1p degradation, leading to the persistence or further accumulation of Swe1p, and cell cycle delay in G2.  相似文献   

15.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

16.
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.  相似文献   

17.
Wang Y  Hu F  Elledge SJ 《Current biology : CB》2000,10(21):1379-1382
At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.  相似文献   

18.
Viral protein R (Vpr), an accessory protein of human immunodeficiency virus type 1 (HIV-1), induces the G2 cell cycle arrest in fission yeast for which host factors, such as Wee1 and Rad24, are required. Catalyzing the inhibitory phosphorylation of Cdc2, Wee1 is known to serve as a major regulator of G2/M transition in the eukaryotic cell cycle. It has been reported that the G2 checkpoint induced by DNA damage or incomplete DNA replication is associated with phosphorylation and upregulation of Wee1 for which Chk1 and Cds1 kinase is required. In this study, we demonstrate that the G2 arrest induced by HIV-1 Vpr in fission yeast is also associated with increase in the phosphorylation and amount of Wee1, but in a Chk1/Cds1-independent manner. Rad24 and human 14-3-3 appear to contribute to Vpr-induced G2 arrest by elevating the level of Wee1 expression. It appears that Vpr could cause the G2 arrest through a mechanism similar to, but distinct from, the physiological G2 checkpoint controls. The results may provide useful insights into the mechanism by which HIV-1 Vpr causes the G2 arrest in eukaryotic cells. Vpr may also serve as a useful molecular tool for exploring novel cell cycle control mechanisms.  相似文献   

19.
DNA damage induces cell cycle arrest (called the damage checkpoint), during which cells carry out actions for repair. A fission yeast protein, Crb2/Rhp9, which resembles budding yeast Rad9p and human BRCA1, promotes checkpoint by activating Chk1 kinase, which restrains Cdc2 activation. We show here that phosphorylation of the T215 Cdc2 site of Crb2 is required for reentering the cell cycle after the damage-induced checkpoint arrest. If this site is nonphosphorylatable, irradiated cells remain arrested, though damage is repaired, and maintain the phosphorylated state of Chk1 kinase. The T215 site is in vitro phosphorylated by purified Cdc2 kinase. Phosphorylation of T215 occurs intensely in response to DNA damage at a late stage, suggesting an antagonistic role of Cdc2 phosphorylation toward checkpoint.  相似文献   

20.
In Schizosaccharomyces pombe, the catalytic subunit of DNA polymerase epsilon (Pol epsilon) is encoded by cdc20(+) and is essential for chromosomal DNA replication. Here we demonstrate that the N-terminal half of Pol epsilon that includes the highly conserved polymerase and exonuclease domains is dispensable for cell viability, similar to observations made with regard to Saccharomyces cerevisiae. However, unlike budding yeast, we find that fission yeast cells lacking the N terminus of Pol epsilon (cdc20(DeltaN-term)) are hypersensitive to DNA-damaging agents and have a cell cycle delay. Moreover, the viability of cdc20(DeltaN-term) cells is dependent on expression of rad3(+), hus1(+), and chk1(+), three genes essential for the DNA damage checkpoint control. These data suggest that in the absence of the N terminus of Pol epsilon, cells accumulate DNA damage that must be repaired prior to mitosis. Our observation that S phase occurs more slowly for cdc20(DeltaN-term) cells suggests that DNA damage might result from defects in DNA synthesis. We hypothesize that the C-terminal half of Pol epsilon is required for assembly of the replicative complex at the onset of S phase. This unique and essential function of the C terminus is preserved in the absence of the N-terminal catalytic domains, suggesting that the C terminus can interact with and recruit other DNA polymerases to the site of initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号