首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. The HTLV-1 transactivator, Tax, is implicated as the viral oncoprotein. Na?ve cells expressing Tax for the first time develop severe cell cycle abnormalities that include increased DNA synthesis, mitotic arrest, appearance of convoluted nuclei with decondensed DNA, and formation of multinucleated cells. Here we report that Tax causes a drastic reduction in Pds1p/securin and Clb2p/cyclin B levels in yeast, rodent, and human cells and a loss of cell viability. With a temperature-sensitive mutant of the CDC23 subunit of the anaphase-promoting complex (APC), cdc23(ts); a temperature-sensitive mutant of cdc20; and a cdh1-null mutant, we show that the diminution of Pds1p and Clb2p brought on by Tax is mediated via the Cdc20p-associated anaphase-promoting complex, APC(Cdc20p). This loss of Pds1p/securin and Clb2p/cyclin B1 occurred before cellular entry into mitosis, caused a G(2)/M cell cycle block, and was accompanied by severe chromosome aneuploidy in both Saccharomyces cerevisiae cells and human diploid fibroblasts. Our results support the notion that Tax aberrantly targets and activates APC(Cdc20p), leading to unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1, a delay or failure in mitotic entry and progression, and faulty chromosome transmission. The chromosomal instability resulting from a Tax-induced deficiency in securin and cyclin B1 provides an explanation for the highly aneuploid nature of adult T-cell leukemia cells.  相似文献   

2.
Regulated protein degradation is essential for eukaryotic cell cycle progression. The anaphase-promoting complex/cyclosome (APC/C) is responsible for the protein destruction required for the initiation of anaphase and the exit from mitosis, including the degradation of securin and B-type cyclins. We initiated a study of the APC/C in the multinucleated, filamentous ascomycete Ashbya gossypii to understand the mechanisms underlying the asynchronous mitosis observed in these cells. These experiments were motivated by previous work which demonstrated that the mitotic cyclin AgClb1/2p persists through anaphase, suggesting that the APC/C may not be required for the division cycle in A. gossypii. We have now found that the predicted APC/C components AgCdc23p and AgDoc1p and the targeting factors AgCdc20p and AgCdh1p are essential for growth and nuclear division. Mutants lacking any of these factors arrest as germlings with nuclei blocked in mitosis. A likely substrate of the APC/C is the securin homologue AgPds1p, which is present in all nuclei in hyphae except those in anaphase. The destruction box sequence of AgPds1p is required for this timed disappearance. To investigate how the APC/C may function to degrade AgPds1p in only the subset of anaphase nuclei, we localized components and targeting subunits of the APC/C. Remarkably, AgCdc23p, AgDoc1p, and AgCdc16p were found in all nuclei in all cell cycle stages, as were the APC/C targeting factors AgCdc20p and AgCdh1p. These data suggest that the AgAPC/C may be constitutively active across the cell cycle and that proteolysis in these multinucleated cells may be regulated at the level of substrates rather than by the APC/C itself.  相似文献   

3.
Fission yeast ste9/srw1 is a WD-repeat protein highly homologous to budding yeast Hct1/Cdh1 and DROSOPHILA: Fizzy-related that are involved in activating APC/C (anaphase-promoting complex/cyclosome). We show that APC(ste9/srw1) specifically promotes the degradation of mitotic cyclins cdc13 and cig1 but not the S-phase cyclin cig2. APC(ste9/srw1) is not necessary for the proteolysis of cdc13 and cig1 that occurs at the metaphase-anaphase transition but it is absolutely required for their degradation in G(1). Therefore, we propose that the main role of APC(ste9/srw1) is to promote degradation of mitotic cyclins when cells need to delay or arrest the cell cycle in G(1). We also show that ste9/srw1 is negatively regulated by cdc2-dependent protein phosphorylation. In G(1), when cdc2-cyclin kinase activity is low, unphosphorylated ste9/srw1 interacts with APC/C. In the rest of the cell cycle, phosphorylation of ste9/srw1 by cdc2-cyclin complexes both triggers proteolysis of ste9/srw1 and causes its dissociation from the APC/C. This mechanism provides a molecular switch to prevent inactivation of cdc2 in G(2) and early mitosis and to allow its inactivation in G(1).  相似文献   

4.
Chromosome segregation is under strict control of the spindle assembly checkpoint (SAC). The SAC regulates anaphase-promoting complex/cyclosome (APC/C)-dependent proteolysis of securin and cyclin B. Unattached or misaligned chromosomes trigger SAC-mediated mitotic delay by stabilizing securin and cyclin B due to inhibition of APC/C until the problem is solved. Here we present a hitherto unavailable model facilitating the simultaneous depiction of chromosome movements and pulse-chased cyclin B proteolysis in every single cell within a cell population. During chromosome misalignment, we observed slow cyclin B degradation, which changed to fast degradation once the SAC was satisfied, initiating chromosome separation and mitotic exit. Slow degradation during a SAC-mediated mitotic delay is part of a tightly regulated balance between cyclin B synthesis and degradation. Since chromosomal misalignment is a rare event, the ability to study entire cell populations enabled us to monitor for the first time SAC surveillance in living cells without the need of highly artificial perturbation by spindle poisons.  相似文献   

5.
Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, we demonstrate that in a normal cell cycle APC(Cdh1) is inactivated in a graded manner and is not extinguished until S phase. Complete inactivation of APC(Cdh1) requires S phase cyclins. Further, persistent APC(Cdh1) activity throughout G1 helps to ensure the proper timing of Cdc20p expression. This suggests that S phase cyclins have an important role in allowing the accumulation of mitotic cyclins and further suggests a regulatory loop among S phase cyclins, APC(Cdh1), and APC(Cdc20).  相似文献   

6.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.  相似文献   

7.
Recycling the cell cycle: cyclins revisited   总被引:43,自引:0,他引:43  
Murray AW 《Cell》2004,116(2):221-234
I discuss advances in the cell cycle in the 21 years since cyclin was discovered. The surprising redundancy amongst the classical cyclins (A, B, and E) and cyclin-dependent kinases (Cdk1 and Cdk2) show that the important differences between these proteins are when and where they are expressed rather than the proteins they phosphorylate. Although the broad principles of the cell cycle oscillator are widely accepted, we are surprisingly ignorant of its detailed mechanism. This is especially true of the anaphase promoting complex (APC), the machine that triggers chromosome segregation and the exit of mitosis by targeting securin and mitotic cyclins for destruction. I discuss how a cyclin/Cdk-based engine could have evolved to assume control of the cell cycle from other, older protein kinases.  相似文献   

8.
In mitosis, the anaphase-promoting complex (APC) regulates the onset of sister-chromatid separation and exit from mitosis by mediating the ubiquitination and degradation of the securin protein and mitotic cyclins. With the use of a baculoviral expression system, we have reconstituted the ubiquitin ligase activity of human APC. In combination with Ubc4 or UbcH10, a heterodimeric complex of APC2 and APC11 is sufficient to catalyze the ubiquitination of human securin and cyclin B1. However, the minimal APC2/11 ubiquitin ligase module does not possess substrate specificity, because it also ubiquitinates the destruction box deletion mutants of securin and cyclin B1. Both APC11 and UbcH10 bind to the C-terminal cullin homology domain of APC2, whereas Ubc4 interacts with APC11 directly. Zn(2+)-binding and mutagenesis experiments indicate that APC11 binds Zn(2+) at a 1:3 M ratio. Unlike the two Zn(2+) ions of the canonical RING-finger motif, the third Zn(2+) ion of APC11 is not essential for its ligase activity. Surprisingly, with Ubc4 as the E2 enzyme, Zn(2+) ions alone are sufficient to catalyze the ubiquitination of cyclin B1. Therefore, the Zn(2+) ions of the RING finger family of ubiquitin ligases may be directly involved in catalysis.  相似文献   

9.
The tumour suppressor gene RASSF1A is frequently silenced in lung cancer and other sporadic tumours as a result of hypermethylation of a CpG island in its promoter. However, the precise mechanism by which RASSF1A functions in cell cycle regulation and tumour suppression has remained unknown. Here we show that RASSF1A regulates the stability of mitotic cyclins and the timing of mitotic progression. RASSF1A localizes to microtubules during interphase and to centrosomes and the spindle during mitosis. The overexpression of RASSF1A induced stabilization of mitotic cyclins and mitotic arrest at prometaphase. RASSF1A interacts with Cdc20, an activator of the anaphase-promoting complex (APC), resulting in the inhibition of APC activity. Although RASSF1A does not contribute to either the Mad2-dependent spindle assembly checkpoint or the function of Emi1 (ref. 1), depletion of RASSF1A by RNA interference accelerated the mitotic cyclin degradation and mitotic progression as a result of premature APC activation. It also caused a cell division defect characterized by centrosome abnormalities and multipolar spindles. These findings implicate RASSF1A in the regulation of both APC-Cdc20 activity and mitotic progression.  相似文献   

10.
Two forms of the anaphase-promoting complex (APC) mediate the degradation of critical cell cycle regulators. APC(Cdc20) promotes sister-chromatid separation by ubiquitinating securin, whereas APC(Cdh1) ubiquitinates mitotic cyclins, allowing the exit from mitosis. Here we show that phosphorylation of human Cdh1 (hCdh1) by cyclin B-Cdc2 alters the conformation of hCdh1 and prevents it from activating APC. A human homologue of yeast Cdc14, human Cdc14a (hCdc14a), dephosphorylates hCdh1 and activates APC(Cdh1). In contrast, hCdc14a does not affect the activity of APC(Cdc20). hCdc14a is a major phosphatase for hCdh1 and localizes to centrosomes in HeLa cells. Therefore, hCdc14a may promote the activation of APC(Cdh1) and exit from mitosis in mammalian cells.  相似文献   

11.
12.
Progress through mitosis requires that the right protein be degraded at the right time. One ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) targets most of the crucial mitotic regulators by changing its substrate specificity throughout mitosis. The spindle assembly checkpoint (SAC) acts on the APC/C co-activator, Cdc20 (cell division cycle 20), to block the degradation of metaphase substrates (for example, cyclin B1 and securin), but not others (for example, cyclin A). How this is achieved is unclear. Here we show that Cdc20 binds to different sites on the APC/C depending on the SAC. Cdc20 requires APC3 and APC8 to bind and activate the APC/C when the SAC is satisfied, but requires only APC8 to bind the APC/C when the SAC is active. Moreover, APC10 is crucial for the destruction of cyclin B1 and securin, but not cyclin A. We conclude that the SAC causes Cdc20 to bind to different sites on the APC/C and this alters APC/C substrate specificity.  相似文献   

13.
Proteolytic destruction of many cyclins is induced by a multi-subunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C). In the budding yeast Saccharomyces cerevisiae, the S phase cyclin Clb5 and the mitotic cyclins Clb1-4 are known as substrates of this complex. The relevance of APC/C in proteolysis of Clb5 is still under debate. Importantly, a deletion of the Clb5 destruction box has little influence on cell cycle progression. To understand Clb5 degradation in more detail, we applied in vivo pulse labeling to determine the half-life of Clb5 at different cell cycle stages and in the presence or absence of APC/C activity. Clb5 is significantly unstable, with a half-life of approximately 8-10 min, at cell cycle periods when APC/C is inactive and in mutants impaired in APC/C function. A Clb5 version lacking its cyclin destruction box is similarly unstable. The half-life of Clb5 is further decreased in a destruction box-dependent manner to 3-5 min in mitotic or G(1) cells with active APC/C. Clb5 instability is highly dependent on the function of the proteasome. We conclude that Clb5 proteolysis involves two different modes for targeting of Clb5 to the proteasome, an APC/C-dependent and an APC/C-independent mechanism. These different modes apparently have overlapping functions in restricting Clb5 levels in a normal cell cycle, but APC/C function is essential in the presence of abnormally high Clb5 levels.  相似文献   

14.
15.
Ubiquitin-mediated proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for sister chromatid separation and the mitotic exit. Like ubiquitylation, protein modification with the small ubiquitin-related modifier SUMO appears to be important during mitosis, because yeast cells impaired in the SUMO-conjugating enzyme Ubc9 were found to be blocked in mitosis and defective in cyclin degradation. Here, we analysed the role of SUMOylation in the metaphase/anaphase transition and in APC/C-mediated proteolysis in Saccharomyces cerevisiae. We show that cells depleted of Ubc9 or Smt3, the yeast SUMO protein, mostly arrested with undivided nuclei and with high levels of securin Pds1. This metaphase block was partially relieved by a deletion of PDS1. The absence of Ubc9 or Smt3 also resulted in defects in chromosome segregation. Temperature-sensitive ubc9-2 mutants were delayed in proteolysis of Pds1 and of cyclin Clb2 during mitosis. The requirement of SUMOylation for APC/C-mediated degradation was tested more directly in G1-arrested cells. Both ubc9-2 and smt3-331 mutants were defective in efficient degradation of Pds1 and mitotic cyclins, whereas proteolysis of unstable proteins that are not APC/C substrates was unaffected. We conclude that SUMOylation is needed for efficient proteolysis mediated by APC/C in budding yeast.  相似文献   

16.
Timely progression into mitosis is necessary for normal cell division. This transition is sensitive to the levels of cyclin B, the regulatory subunit of the master mitotic kinase, Cdk1. Cyclin B accumulates during G2 and prophase when its rate of destruction by the anaphase promoting complex (APC) is low. Securin is also an APC substrate and is known for its role in inactivating the cohesin-cleaving enzyme, separase, until the metaphase to anaphase transition. Here we show that securin has an additional role in cell-cycle regulation, that of modulating the timing of entry into M-phase. In mouse oocytes, excess securin caused stabilization of cyclin B and precocious entry into M-phase. Depletion of securin increased cyclin B degradation, resulting in delayed progression into M-phase. This effect required APC activity and was reversed by expression of wild-type securin. These data reveal a role for securin at the G2-M transition and suggest a more general mechanism whereby physiological levels of co-competing APC substrates function in modulating the timing of cell-cycle transitions.  相似文献   

17.
Mammalian eggs naturally arrest at metaphase of the second meiotic division, until sperm triggers a series of Ca(2+) spikes that result in activation of the anaphase-promoting complex/cyclosome (APC/C). APC/C activation at metaphase targets destruction-box containing substrates, such as cyclin B1 and securin, for degradation, and as such eggs complete the second meiotic division. Cyclin B1 degradation reduces maturation (M-phase)-promoting factor (MPF) activity and securin degradation allows sister chromatid separation. Here we examined the second meiotic division in mouse eggs following expression of a cyclin B1 construct with an N-terminal 90 amino acid deletion (Delta 90 cyclin B1) that was visualized by coupling to EGFP. This cyclin construct was not an APC/C substrate, and so following fertilization, sperm were incapable of stimulating Delta 90 cyclin B1 degradation. In these eggs, chromatin remained condensed and no pronuclei formed. As a consequence of the lack of pronucleus formation, sperm-triggered Ca(2+) spiking continued indefinitely, consistent with a current model in which the sperm-activating factor is localized to the nucleus. Because Ca(2+) spiking was not inhibited by Delta 90 cyclin B1, the degradation timing of securin, visualized by coupling it to EGFP, was unaffected. However, despite rapid securin degradation, sister chromatids remained attached. This was a direct consequence of MPF activity because separation was induced following application of the MPF inhibitor roscovitine. Similar observations regarding the ability of MPF to prevent sister chromatid separation have recently been made in Xenopus egg extracts and in HeLa cells. The results presented here show this mechanism can also occur in intact mammalian eggs and further that this mechanism appears conserved among vertebrates. We present a model in which metaphase II arrest is maintained primarily by MPF levels only.  相似文献   

18.
The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.  相似文献   

19.
The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti‐apoptotic protein Mcl‐1 is regulated during the cell cycle and peaks at mitosis. Mcl‐1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin‐dependent kinase 1 (CDK1)–cyclin B1 initiates degradation of Mcl‐1 in cells arrested in mitosis by microtubule poisons. Mcl‐1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase‐promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl‐1 during mitotic arrest by mutation of either Thr92 or a D‐box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl‐1 by CDK1–cyclin B1 and its APC/CCdc20‐mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.  相似文献   

20.
The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号