首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.  相似文献   

2.
The microbial community composition of Wadden Sea sediments of the German North Sea coast was investigated by in situ hybridization with group-specific fluorescently labeled, rRNA-targeted oligonucleotides. A large fraction (up to 73%) of the DAPI (4′,6-diamidino-2-phenylindole)-stained cells hybridized with the bacterial probes. Nearly 45% of the total cells could be further identified as belonging to known phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in all layers, followed by the sulfate-reducing bacteria.  相似文献   

3.
Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.  相似文献   

4.
Geochemical, biogeochemical, and molecular genetic investigation of the upper (0–5 cm) bottom sediments of the Yamal sector of the Kara Sea was carried out. The Yamal sector is well-protected from the massive inflow of river water. The sediments were oxidized at the surface and weakly reduced in the 3?5-cm layer. Corg content varied from 0.1 to 1.3%, while the level of dissolved СН4 was 1.9 to 20.3 μmol L–1. The isotopic composition of organic matter (OM) carbon, δ13Corg, varied from–27.5 to–22.2‰ (–25.4‰ on average). The share of terrigenous OM was 13.3 to 72.2% (48.9% on average). The rate of methane production, methane oxidation, and sulfate reduction varied from 0.8 to 9.0 (2.7 on average) nmol СН4 dm–3 day–1, from 9.9 to 103 (31.6 on average) nmol СН4 dm–3 day–1, and from 0.49 to 2.2 (1.1 on average) μmol S dm–3 day–1, respectively. High-throughput sequencing of the amplicons of the 16S rRNA genes was used to reveal the physiological groups of microorganisms responsible for the processes of methane production and oxidation, sulfate reduction, and oxidation of reduced sulfur compounds. Members of the phylum Woesearchaeota were predominant among archaea. Methanogenic archaea belonged to the families Methanobacteriaceae, Methanococcaceae, and Methanosarcinaceae (Euryarchaeota). Methanotrophs of the family Methylococcaceae were revealed among the Gammaproteobacteria, with their share in the sediments ~1%. In the class Deltaproteobacteria (15.4%), three orders of sulfate reducers were predominant: Desulfobacterales, Desulfovibrionales, and Desulfuromonadales. Oxidation of reduced sulfur compounds was carried out by chemolithoautotrophic bacteria of the genera Sulfurovum, Sulfurimonas, and Arcobacter of the class Epsilonproteobacteria (1.1% of the total microbial number).  相似文献   

5.
This study used a genetic fingerprinting technique (automated ribosomal intergenic spacer analysis [ARISA]) to characterize microbial communities from a culture-independent perspective and to identify those environmental factors that influence the diversity of bacterial assemblages in Wisconsin lakes. The relationships between bacterial community composition and 11 environmental variables for a suite of 30 lakes from northern and southern Wisconsin were explored by canonical correspondence analysis (CCA). In addition, the study assessed the influences of ARISA fragment detection threshold (sensitivity) and the quantitative, semiquantitative, and binary (presence-absence) use of ARISA data. It was determined that the sensitivity of ARISA was influential only when presence-absence-transformed data were used. The outcomes of analyses depended somewhat on the data transformation applied to ARISA data, but there were some features common to all of the CCA models. These commonalities indicated that differences in bacterial communities were best explained by regional (i.e., northern versus southern Wisconsin lakes) and landscape level (i.e., seepage lakes versus drainage lakes) factors. ARISA profiles from May samples were consistently different from those collected in other months. In addition, communities varied along gradients of pH and water clarity (Secchi depth) both within and among regions. The results demonstrate that environmental, temporal, regional, and landscape level features interact to determine the makeup of bacterial assemblages in northern temperate lakes.  相似文献   

6.
7.
Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.  相似文献   

8.
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.  相似文献   

9.
Microphytobenthic biofilms in estuaries, dominated by epipelic diatoms, are sites of high primary productivity. These diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides and glycoproteins, providing a substantial pool of organic carbon available to heterotrophs within the sediment. In this study, sediment slurry microcosms were enriched with either colloidal carbohydrates or colloidal EPS (cEPS) or left unamended. Over 10 days, the fate of these carbohydrates and changes in β-glucosidase activity were monitored. Terminal restriction fragment length polymorphism (T-RFLP), DNA sequencing, and quantitative PCR (Q-PCR) analysis of 16S rRNA sequences were used to determine whether sediment bacterial communities exhibited compositional shifts in response to the different available carbon sources. Initial heterotrophic activity led to reductions in carbohydrate concentrations in all three microcosms from day 0 to day 2, with some increases in β-glucosidase activity. During this period, treatment-specific shifts in bacterial community composition were not observed. However, by days 4 and 10, the bacterial community in the cEPS-enriched sediment diverged from those in colloid-enriched and unamended sediments, with Q-PCR analysis showing elevated bacterial numbers in the cEPS-enriched sediment at day 4. Community shifts were attributed to changes in cEPS concentrations and increased β-glucosidase activity. T-RFLP and sequencing analyses suggested that this shift was not due to a total community response but rather to large increases in the relative abundance of members of the γ-proteobacteria, particularly Acinetobacter-related bacteria. These experiments suggest that taxon- and substrate-specific responses within the bacterial community are involved in the degradation of diatom-derived extracellular carbohydrates.  相似文献   

10.
Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics.  相似文献   

11.
Organic phosphorus (Po) was a major fraction of phosphorus (P) in sediments of lakes, and microbes were involved in most of its relevant biogeochemical cycling. Forms and quantification of Po were investigated by sequential fractionation in 18 sediments of Lake Dianchi, Southwest China. Microbial biomass and community structure in these sediments were determined by phospholipid fatty acids (PLFAs). Distribution of Po fractions were in the rank order that humic Po > nucleic acid and polyphosphate > residual P > Ca-Al-Po > Fe-Po > sugar Po > acid soluble Po > H2O-Po. The recoveries of Po and Pi in these detailed sequential fractions including residual P shows that the total contents of Po in sediments of lakes were overestimated by the Standards, Measurements and Testing (SMT) protocol (ignition method). Microbial biomass including Gram-positive bacteria (14.4–20.0%), Gram-negative bacteria (32.7–38.4%), microeukaryotes (14.9–24.4%), aerobic bacteria (43.6–55.8%), anaerobic bacteria (0–2.9%) and type ? methanotrophs (17.6–24.4%) were assigned. Microbial mass and their composition were strongly correlated with H2O-Po, Fe-Po, nucleic acid and polyphosphate, and humic Po, though residual P was likely inert for microbes in sediments. The formation and degradation of Po was closely related with microbial activities in sediments. These findings have implications for understanding the role of microbes on cycling of Po and organic matter in sediments of lakes.  相似文献   

12.
The effects of water depth, seasonal exposure, and substrate orientation on microbioerosion were studied by means of a settlement experiment deployed in 15, 50, 100, and 250 m water depth south-west of the Peloponnese Peninsula (Greece). At each depth, an experimental platform was exposed for a summer period, a winter period, and about an entire year. On the up- and down-facing side of each platform, substrates were fixed to document the succession of bioerosion traces, and to measure variations in bioerosion and accretion rates. In total, 29 different bioerosion traces were recorded revealing a dominance of microborings produced by phototrophic and organotrophic microendoliths, complemented by few macroborings, attachment scars, and grazing traces. The highest bioerosion activity was recorded in 15 m up-facing substrates in the shallow euphotic zone, largely driven by phototrophic cyanobacteria. Towards the chlorophyte-dominated deep euphotic to dysphotic zones and the organotroph-dominated aphotic zone the intensity of bioerosion and the diversity of bioerosion traces strongly decreased. During summer the activity of phototrophs was higher than during winter, which was likely stimulated by enhanced light availability due to more hours of daylight and increased irradiance angles. Stable water column stratification and a resulting nutrient depletion in shallow water led to lower turbidity levels and caused a shift in the photic zonation that was reflected by more phototrophs being active at greater depth. With respect to the subordinate bioerosion activity of organotrophs, fluctuations in temperature and the trophic regime were assumed to be the main seasonal controls. The observed patterns in overall bioeroder distribution and abundance were mirrored by the calculated carbonate budget with bioerosion rates exceeding carbonate accretion rates in shallow water and distinctly higher bioerosion rates at all depths during summer. These findings highlight the relevance of bioerosion and accretion for the carbonate budget of the Ionian Sea.  相似文献   

13.
Abstract

After the successful establishment of free–living populations of Rose–ringed Parakeets (Psittacula krameri) and Common Mynas (Acridotheres tristis) in Jeddah, an overview of all exotic birds imported into Jeddah in the first three months of 1990 is given.  相似文献   

14.
Viruses are now recognized as a key component in pelagic systems, but their role in marine sediment has yet to be assessed. In this study bacterial and viral densities were determined at nine deep-sea stations selected from three main sites (i.e., the Sporades Basin, the Cretan Sea, and the Ierapetra Trench at depths of 1,232, 1,840, and 4,235 m, respectively) of the Eastern Mediterranean. The three areas were characterized by different phytopigment and biopolymeric carbon concentrations and by changes in the protein and carbohydrate pools. A gradient of increasing trophic conditions was observed from the Sporades Basin (North Aegean) to the Ierapetra Trench (South Aegean). Viral densities (ranging from 1 × 109 to 2 × 109 viruses ml of sediment−1) were significantly correlated to bacterial densities (n = 9, r2 = 0.647) and reached values up to 3 orders of magnitude higher than those generally reported for the water column. However, the virus-to-bacterium density ratio in deep-sea sediments was about 1 order of magnitude lower (range of 2 to 5, with a modal value of 2.6) than in pelagic environments. Virus density decreased vertically with depth in sediment cores at all stations and was below detection limits at the 10-cm depth of the abyssal sediments of the Ierapetra Trench. Virus density in the sediment apparently reflected a gradient of particle fluxes and trophic conditions, displaying the highest values in the Sporades Basin. The low virus-to-bacterium ratios and their inverse relationship with station depth suggest that the role played by viruses in controlling deep-sea benthic bacterial assemblages and biogeochemical cycles is less relevant than in pelagic systems.  相似文献   

15.
16.
The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH4+, 53–717 μg/g DW), pH (6.9–7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH4+, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.  相似文献   

17.
Abstract

The present distribution of the Black Francolin (Francolinus francolinus) in Cyprus is concentrated in two restricted areas: the Karpasia peninsula in the north-east of the island, where about 200 birds live; and the lowlands of Paphos district in the west of Cyprus, where about 150 birds occur mainly on Akamas peninsula and around the villages of Paphos and Polis. As the decline of the population is correlated with the level of hunting, protection is urgently needed.  相似文献   

18.
Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection.  相似文献   

19.
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes.  相似文献   

20.
The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ~1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ~10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号