首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the relative expression of CD11c and CD1a, we have identified three fractions of dendritic cells (DCs) in human peripheral blood, including a direct precursor of Langerhans cells (LCs). The first two fractions were CD11c+ DCs, comprised of a major CD1a+/CD11c+ population (fraction 1), and a minor CD1a-/CD11c+ component (fraction 2). Both CD11c+ fractions displayed a monocyte-like morphology, endocytosed FITC-dextran, expressed CD45RO and myeloid markers such as CD13 and CD33, and possessed the receptor for GM-CSF. The third fraction was comprised of CD1a-/CD11c- DCs (fraction 3) and resembled plasmacytoid T cells. These did not uptake FITC-dextran, were negative for myeloid markers (CD13/CD33), and expressed CD45RA and a high level of IL-3Ralpha, but not GM-CSF receptors. After culture with IL-3, fraction 3 acquired the characteristics of mature DCs; however, the expression of CD62L (lymph node-homing molecules) remained unchanged, indicating that fraction 3 can be a precursor pool for previously described plasmacytoid T cells in lymphoid organs. Strikingly, the CD1a+/CD11c+ DCs (fraction 1) quickly acquired LC characteristics when cultured in the presence of GM-CSF + IL-4 + TGF-beta1. Thus, E-cadherin, Langerin, and Lag Ag were expressed within 1 day of culture, and typical Birbeck granules were observed. In contrast, neither CD1a-/CD11c+ (fraction 2) nor CD1a-/CD11c- (fraction 3) cells had the capacity to differentiate into LCs. Furthermore, CD14+ monocytes only expressed E-cadherin, but lacked the other LC markers after culture in these cytokines. Therefore, CD1a+/CD11c+ DCs are the direct precursors of LCs in peripheral blood.  相似文献   

2.
Atopic dermatitis (AD) is a pruritic, chronically relapsing skin disease in which Th2 cells play a crucial role in cutaneous and extracutaneous immune reactions. In humans, CD11c+CD123- myeloid dendritic cells (mDC) and CD11c-CD123+ plasmacytoid DC (pDC) orchestrate the decision-making process in innate and acquired immunity. Since the number and function of these blood dendritic cell (DC) subsets reportedly reflect the host immune status, we studied the involvement of the DC subsets in the pathogenesis of AD. Patients with AD had an increased DC number and a low mDC:pDC ratio with pDC outnumbering mDC in the peripheral blood compared with normal subjects and psoriasis patients (a Th1 disease model group). The mDC:pDC ratio was correlated with the total serum IgE level, the ratio of IFN-gamma-producing blood cells:IL-4-producing blood cells, and the disease severity. In vitro allogeneic stimulation of naive CD4+ cells with atopic DC showed that the ability of pDC for Th1 induction was superior or comparable to that of mDC. In skin lesions, pDC infiltration was in close association with blood vessels expressing peripheral neural addressins. Therefore, compartmental imbalance and aberrant immune function of the blood DC subsets may deviate the Th1/Th2 differentiation and thus induce protracted allergic responses in AD.  相似文献   

3.
Wild-type mice immunized with MART-1 melanoma Ag-engineered dendritic cells (DC) generate strong Ag-specific immunity that has an absolute requirement for both CD8(+) and CD4(+) T cells. DC administration to CD8 alpha knockout mice displayed unexpectedly enhanced levels of protection to tumor challenge despite this deficiency in CD8(+) T cells and the inability to mount MHC class I-restricted immune responses. This model has the following features: 1) antitumor protection is Ag independent; 2) had an absolute requirement for CD4(+) and NK1.1(+) cells; 3) CD4(+) splenocytes are responsible for cytokine production; 4) lytic cells in microcytotoxicity assays express NK, but lack T cell markers (NK1.1(+) alpha beta TCR(-) CD3(-)); and 5) the lytic phenotype can be transferred to naive CD8 alpha knockout mice by NK1.1(+) splenocytes. Elucidation of the signaling events that activate these effective cytotoxic cells and the putative suppressive mechanisms in a wild-type environment may provide means to enhance the clinical activity of DC-based approaches.  相似文献   

4.
Neonatal cytotoxic T cell responses have only been elicited to date with immunogens or delivery systems inducing potent direct APC activation. To define the minimal activation requirements for the induction of neonatal CD8(+) cytotoxic responses, we used synthetic microspheres (MS) coated with a single CD8(+) T cell peptide from lymphocytic choriomeningitis virus (LCMV) or HIV-1. Unexpectedly, a single injection of peptide-conjugated MS without added adjuvant induced CD4-dependent Ag-specific neonatal murine cytotoxic responses with adult-like CTL precursor frequency, avidity for Ag, and frequency of IFN-gamma-secreting CD8(+) splenocytes. Neonatal CD8(+) T cell responses to MS-LCMV were elicited within 2 wk of a single immunization and, upon challenge, provided similar protection from viral replication as adult CTLs, demonstrating their in vivo competence. As previously reported, peptide-coated MS elicited no detectable activation of adult CD11c(+) dendritic cells (DC). In contrast, CTL responses were associated with a partial activation of neonatal CD11c(+) DC, reflected by the up-regulation of CD80 and CD86 expression but no concurrent changes in MHC class II or CD40 expression. However, this partial activation of neonatal DC was not sufficient to circumvent the requirement for CD4(+) T cell help. The effective induction of neonatal CD8(+) T cell responses by this minimal Ag delivery system demonstrates that neonatal CD11c(+) DC may mature sufficiently to stimulate naive CD8(+) neonatal T cells, even in the absence of strong maturation signals.  相似文献   

5.
Modification in the function of dendritic cells (DC), such as that achieved by microbial stimuli or T cell help, plays a critical role in determining the quality and size of adaptive responses to Ag. NKT cells bearing an invariant TCR (iNKT cells) restricted by nonpolymorphic CD1d molecules may constitute a readily available source of help for DC. We therefore examined T cell responses to i.v. injection of soluble Ag in the presence or the absence of iNKT cell stimulation with the CD1d-binding glycolipid alpha-galactosylceramide (alpha-GalCer). Considerably enhanced CD4(+) and CD8(+) T cell responses were observed when alpha-GalCer was administered at the same time as or close to OVA injection. This enhancement was dependent on the involvement of iNKT cells and CD1d molecules and required CD40 signaling. Studies in IFN-gammaR(-/-) mice indicated that IFN-gamma was not required for the adjuvant effect of alpha-GalCer. Consistent with this result, enhanced T cell responses were observed using OCH, an analog of alpha-GalCer with a truncated sphingosine chain and a reduced capacity to induce IFN-gamma. Splenic DC from alpha-GalCer-treated animals expressed high levels of costimulatory molecules, suggesting maturation in response to iNKT cell activation. Furthermore, studies with cultured DC indicated that potentiation of T cell responses required presentation of specific peptide and alpha-GalCer by the same DC, implying conditioning of DC by iNKT cells. The iNKT-enhanced T cell responses resisted challenge with OVA-expressing tumors, whereas responses induced in the absence of iNKT stimulation did not. Thus, iNKT cells exert a significant influence on the efficacy of immune responses to soluble Ag by modulating DC function.  相似文献   

6.
Two types of dendritic cells (DC) are circulating in human blood and can be identified by their differential expression of the myeloid Ag CD11c. In this study, we show that CD11c- peripheral blood (PB)-DC correspond to plasmacytoid DC of lymphoid tissue not only by their surface Ag expression profile but, more impressively, by their peculiar ultramorphology. We also demonstrate that CD11c- and CD11c+ DC differ in the quality of their response to and in their requirement for certain cytokines. Freshly isolated CD11c- cells depend on IL-3 for survival and use autocrine or exogenous TNF-alpha as maturation signal, leading to the appearance of a highly dendritic phenotype, the up-regulation and redistribution of MHC class II from lysosomal compartments to the plasma membrane, the increased expression of costimulatory molecules, and the switch from a high Ag-processing to a low Ag-processing/potent accessory cell mode. Surprisingly, IL-4 efficiently killed freshly isolated CD11c- PB-DC, but did not impair the viability of CD11c+ PB-DC and, together with GM-CSF, induced maturation of these cells. A direct functional comparison revealed that neo-Ag-modified and subsequently matured CD11c- but to a lesser extent CD11c+ DC were able to prime naive Ag-specific CD4+ T cells. Our findings show that two diverse DC types respond to certain T cell-derived cytokines in a differential manner and, thus, suggest that suppression or activation of functionally diverse DC types may be a novel mechanism for the regulation of the quantity and quality of immune responses.  相似文献   

7.
Dendritic cells play an important role in the development of immune responses in malaria, but the contribution of plasmacytoid dendritic cells (pDC) to CD4 T cell activation and immunopathology is unknown. We have investigated pDC in a Plasmodium chabaudi infection in mice. During infection, pDC increased in number and transiently up-regulated expression of Major Histocompatibility Complex class II and co-stimulatory molecules. However, in contrast to classical CD11chigh DC, pDC could not phagocytose parasites or process parasite proteins, to activate CD4 T cells. Activation of naïve pDC, but not CD11chigh DC, by infected red blood cells induced IFNα in vitro, which was dependent on the Toll-like receptor, TLR9. However, inactivation of TLR9 in knock-out mice had no effect on a P. chabaudi infection suggesting that TLR9 was not crucial for parasite elimination or pathology. Neither pDC nor IFNαβ were essential for parasite clearance as mice depleted of pDC or IFNαβ Receptor-knock-out mice could control infection. However, these mice lost significantly more weight than untreated or wild-type mice. We conclude that classical DC are the major antigen-presenting cells for CD4 T cells in this infection, but that pDC and IFNαβ may play minor roles in controlling the magnitude of acute stage pathology.  相似文献   

8.
The involvement of immune cells in prion capture and transport to lymphoid tissues still remains unclear. To investigate the role of dendritic cells (DC), we used DTR+/+ mice, a transgenic model designed to trigger short-term ablation of DC. Transient depletion of DC around the time of intraperitoneal infection delayed prion replication in the spleen, as followed by PrPsc amount, a specific hallmark of prion diseases. Consequently, neuroinvasion and incubation time of prion disease were delayed. In contrast, no differences were observed after oral infection. These results suggest that DC act as vectors for prions from the peripheral entry site to the spleen.  相似文献   

9.
The mammalian target of rapamycin (mTOR) controls cell growth and survival through two distinct complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although several reports have suggested the involvement of mTORC1 in development and function of dendritic cells (DCs), its physiological roles remain obscure. We therefore established mTORC1 signal-deficient mice lacking Raptor, an essential component of mTORC1 signal, specifically in DC lineage (referred to here as Raptor(DC-/-)). Raptor(DC-/-) mice exhibited cell expansion in specific subsets of DCs such as splenic CD8(+) DCs and intestinal CD11c(+)CD11b(+) DCs. We also found that impaired mTORC1 signal resulted in the suppression of IL-10 production along with enhanced CD86 expression in intestinal CD11c(+)CD11b(+) DCs and that Raptor(DC-/-) mice were highly susceptible to dextran sodium sulfate-induced colitis. Our results uncover mTORC1-mediated anti-inflammatory programs in intestinal CD11c(+)CD11b(+) DCs to limit the intestinal inflammation.  相似文献   

10.
Dendritic cells (DC) are innate immune effectors and are critically involved in regulating T cell immunity. Osteoclasts (OC) are bone-resorbing cells derived from the monocyte/macrophage lineage in response to receptor activator of NF-kappaB ligand (RANKL). DC and T cells form aggregates in the inflammatory infiltrates at active disease sites in human and in experimental rheumatoid arthritis and periodontitis. We investigated whether DC interactions with T cells in the bone environment can support the development of functional OC. In the present study, we demonstrate that upon proper activation by microbial or protein Ags (namely Actinobacillus actinomycetemcomitans, bovine insulin, and outer membrane protein-1) and during immune interactions with CD4+ T cells in vitro, murine BM-derived and splenic CD11c+ DC (CD11b- F4/80- Ly-6C- CD31-) develop into TRAP+ CT-R+ cathepsin-k+ functional OC in a RANKL/RANK-dependent manner. Rescue and blocking experiments using CD11c+ DC derived from Csf-1(-/-) op/op mice show that M-CSF is required "before" developing such osteoclastogenic potential upstream of RANKL/RANK signaling, suggesting that immature CD11c+ DC can indeed act like OC precursors. In addition, these CD11c+ DC-derived OC are capable of inducing bone loss after adoptive transfer in vivo. These data suggest a direct contribution of DC during immune interactions with CD4+ T cells to inflammation-induced osteoclastogenesis. Therefore, our findings not only provide further evidence for DC plasticity, but also extend the current paradigm of osteoimmunology.  相似文献   

11.
In the present study we evaluated the role of IFN-alpha in the generation of dendritic cells (IFN-DCs) with priming activity on CD8(+) T lymphocytes directed against human tumor Ags. A 3-day treatment of monocytes, obtained as adherent PBMCs from HLA-A*0201(+) healthy donors, with IFN-alpha and GM-CSF led to the differentiation of DCs displaying a semimature phenotype, but promptly inducing CD8(+) T cell responses after one in vitro sensitization with peptides derived from melanoma (gp100(209-217) and MART-1/Melan-A(27-35)) and adenocarcinoma (CEA(605-613)) Ags. However, these features were lost when IFN-DCs were generated from immunosorted CD14(+) monocytes. The ability of adherent PBMCs to differentiate into IFN-DCs expressing higher levels of costimulatory molecules and exerting efficient T cell priming capacity was associated with the presence of contaminating NK cells, which underwent phenotypic and functional activation upon IFN-alpha treatment. NK cell boost appeared to be mediated by both direct and indirect (i.e., mediated by IFN-DCs) mechanisms. Experiments performed to prove the role of contaminating NK cells in DC differentiation showed that IFN-DCs generated in the absence of NK were phenotypically less mature and could not efficiently prime antitumor CD8(+) lymphocytes. Reciprocally, IFN-DCs raised from immunosorted CD14(+) monocytes regained their T cell priming activity when NK cells were added to the culture before IFN-alpha and GM-CSF treatment. Together, our data suggest that the ability of IFN-DCs to efficiently prime anti-tumor CD8(+) T lymphocytes relied mostly on the positive cross-talk occurring between DCs and NK cells upon stimulation with IFN-alpha.  相似文献   

12.
IL-12 and TNF-alpha production by dendritic cells (DCs) is a critical step in the initiation of local inflammation and adaptive immune responses. We show in this study that a small molecule immune response modifier that is a Toll-like receptor 7 (TLR7) agonist induces IL-12 and TNF-alpha production from murine CD11c(+)CD11b(+)CD8(-) DCs, a subset not previously known for this activity. Stimulation of these DCs through TLR7 in vivo induces significant cytokine production even 12 h after initial stimulation, as well as migration of the DC into T cell zones of the lymphoid tissue. In contrast, stimulation through TLR4 and TLR9 induced IL-12 production predominantly from CD8(+) DCs, consistent with previously published data. All TLR stimuli induced the increase in surface expression of the activation markers B7-1, B7-2, and class II in both CD8(+) and CD8(-) DCs, demonstrating that CD8(+) DCs do respond to TLR7-mediated stimuli. To date this is the only known stimuli to induce preferential cytokine production from CD8(-) DCs. Given the efficacy of TLR7 agonists as antiviral agents, the data collectively indicate that stimulation of CD8(-) DCs through TLR7 most likely plays a role in the generation of antiviral immune responses.  相似文献   

13.
Dendritic cells (DCs) require a maturation signal to acquire efficient CTL-priming capacity. In vitro FcgammaR-mediated internalization of Ag-Ab immune complexes (ICs) can induce maturation of DCs. In this study, we show that IC-induced DC maturation in vitro enables DCs to prime peptide-specific CD8+ CTLs in vivo, independently of CD4+ Th cells. Importantly, OVA/anti-OVA IC-treated DCs not only primed CD8+ CTLs to an exogenously loaded peptide nonrelated to OVA, but also efficiently primed CTLs against the dominant CTL epitope derived from the OVA Ag present in the ICs. Our studies show that ICs fulfill a dual role in priming of CD8+ CTL responses to exogenous Ags: enhancement of Ag uptake by DCs and activation of DCs, resulting in "license to kill." These findings indicate that the presence of specific Abs can crucially affect the induction of cytotoxic cellular responses.  相似文献   

14.
HIV and the related simian immunodeficiency virus (SIV), which causes AIDS in macaques, infect only a small percentage of CD4+ lymphocytes at any point during the disease. We have identified three distinct cellular phenotypes within the CD4+ subpopulation in macaques, based on cell surface expression of CD44 and CD45R, which putatively represent successive stages of postthymic proliferation and functional maturation. Two of these subsets, CD44hi CD45R+, which contained virtually all circulating cells in cycle, and CD44hi CD45R-, which was noncycling and has been linked to immunologic memory, were selectively depleted in SIV-infected animals at an asymptomatic stage of disease. To test whether SIV infection was restricted to cells with this phenotype in vivo, we used the polymerase chain reaction to sensitively detect SIV DNA in purified subpopulations of CD4+ lymphocytes. We found that SIV exclusively infected blood lymphocytes expressing high levels of CD44. Within this subset infection occurred not only in the fraction containing actively proliferating cells (CD45R+), but also in resting, putative memory cells (CD45R-). These data directly demonstrate that cellular maturation stages of normal postthymic T lymphocyte differentiation are important factors in permitting lentivirus infection in vivo, and that noncycling, memory T cells may be a reservoir for SIV.  相似文献   

15.
The central role of T cells in the induction of immunological tolerance against i.v. Ags has been well documented. However, the role of dendritic cells (DCs), the most potent APCs, in this process is not clear. In the present study, we addressed this issue by examining the involvement of two different DC subsets, CD11c(+)CD11b(+) and CD11c(+)CD8(+) DCs, in the induction of i.v. tolerance. We found that mice injected i.v. with an autoantigen peptide of myelin oligodendrocyte glycoprotein (MOG) developed less severe experimental autoimmune encephalomyelitis (EAE) following immunization with MOG peptide but presented with more CD11c(+)CD11b(+) DCs in the CNS and spleen. Upon coculturing with T cells or LPS, these DCs exhibited immunoregulatory characteristics, including increased production of IL-10 and TGF-beta but reduced IL-12 and NO; they were also capable of inhibiting the proliferation of MOG-specific T cells and enhancing the generation of Th2 cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells. Furthermore, these DCs significantly suppressed ongoing EAE upon adoptive transfer. These results indicate that CD11c(+)CD11b(+) DCs, which are abundant in the CNS of tolerized animals, play a crucial role in i.v. tolerance and EAE and may be a candidate cell population for immunotherapy of autoimmune diseases.  相似文献   

16.
ATP-dependent Lon protease-deficient Salmonella enterica serovar Typhimurium (strain CS2022) appeared to invade successfully the mesenteric lymph nodes (MLN) and Peyer's patches (PP) of BALB/c mice and appeared to be easily eradicated by the host after oral immunization. As detected by flow cytometry, the population of major histocompatibility complex class I (MHC-I)-expressing macrophages and dendritic cells (DCs) was increased in the PP of mice immunized with CS2022 on day 6 after immunization. Thereafter, the population of splenic surface CD69(+) T lymphocytes prepared from mice immunized with CS2022 6 weeks prior to measurement increased as a result of the administration of the extracellular vesicles of RAW264.7 macrophage-like cells derived by Salmonella challenge. In addition, the proliferation of CD8(+) and even of CD4(+)T cells isolated from mouse spleens immunized with CS2022 was enhanced after cocultivation with naive DCs in the presence of the extracellular vesicles. These findings indicate that the extracellular vesicles prepared from the Salmonella-challenged macrophages carried salmonellae antigens to bystander DCs, thereby stimulating T-cell responses. Therefore, as antigen presentation after phagocytosis should be a central process in the T-cell activation that occurs in response to Salmonella infection, an oral immunization with CS2022 sufficiently induces T cell-mediated immunity in mice.  相似文献   

17.
Sex biases in autoimmunity and infection suggest that steroid sex hormones directly modulate immune cells. We show in this study that 17-beta-estradiol (E2) promotes the differentiation of functional dendritic cells (DC) from murine bone marrow precursor cells. Remarkably, ex vivo DC differentiation was inhibited in steroid hormone-deficient medium, and was restored by addition of physiological amounts of E2, but not dihydrotestosterone. DC differentiation was inhibited by the estrogen receptor (ER) antagonists ICI 182,780 and tamoxifen, and from ERalpha(-/-) bone marrow cells, indicating that E2 acted via ERs. E2 addition was most effective in promoting DC differentiation immediately ex vivo, but did not increase DC proliferation. E2 treatment specifically promoted differentiation of a CD11c(+) CD11b(int) DC population that displayed high levels of cell surface MHC class II and CD86, suggesting that E2 could augment numbers of potent APC. DC that differentiated in E2-supplemented medium were fully functional in their capability to mediate presentation of self and foreign Ags and stimulate the proliferation of naive CD4(+) T cells. The requirement for estrogen during DC differentiation suggests a mechanism by which E2 levels in peripheral tissues might modulate both the number and functional capabilities of DC in vivo, thereby influencing immune responses.  相似文献   

18.
Lentivectors stimulate potent immune responses to antigen transgenes and are being developed as novel genetic vaccines. To improve safety while retaining efficacy, we constructed a lentivector in which transgene expression was restricted to antigen-presenting cells using the mouse dectin-2 gene promoter. This lentivector expressed a green fluorescent protein (GFP) transgene in mouse bone marrow-derived dendritic cell cultures and in human skin-derived Langerhans and dermal dendritic cells. In mice GFP expression was detected in splenic dectin-2+ cells after intravenous injection and in CD11c+ dendritic cells in the draining lymph node after subcutaneous injection. A dectin-2 lentivector encoding the human melanoma antigen NY-ESO-1 primed an NY-ESO-1-specific CD8+ T-cell response in HLA-A2 transgenic mice and stimulated a CD4+ T-cell response to a newly identified NY-ESO-1 epitope presented by H2 I-Ab. As immunization with the optimal dose of the dectin-2 lentivector was similar to that stimulated by a lentivector containing a strong constitutive viral promoter, targeting antigen expression to dendritic cells can provide a safe and effective vaccine.  相似文献   

19.

Background

Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c+ dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c+ or CD103+) and CD163+CD11c macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.

Methods

Treated HLA-DQ2+ CD patients (n = 12) and HLA-DQ2+ gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.

Results

In treated CD patients, the gluten challenge increased the density of CD14+CD11c+ DCs, whereas the density of CD103+CD11c+ DCs and CD163+CD11c macrophages decreased, and the density of CD1c+CD11c+ DCs remained unchanged. Most CD14+CD11c+ DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3+ intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed.

Conclusions

Rapid accumulation of CD14+CD11c+ DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c+ DCs indicates that these cells are newly recruited monocytes.  相似文献   

20.
Synthetic immunostimulatory nucleic acids such as CpG DNA are being harnessed therapeutically as vaccine adjuvants, anticancer or antiallergic agents. Efforts to identify nucleic acid-based agents capable of more specifically modulating the immune system are being developed. The current study identifies a novel class of single-stranded oligoribonucleotides (ORN) containing unmethylated CpG motifs and a poly(G) run at the 3' end (CpG ORN) that directly stimulate human CD14+CD11c+ monocytes but not dendritic cells or B cells. CpG ORN activate NF-kappaB and p38 MAPK, resulting in IL-6 and IL-12 production and costimulatory molecule up-regulation but not IFNalpha. Methylation of cytosine at the 5' portion in core CpG motif abrogates such activation. TLR3, 7, 8, or 9 alone did not confer response to CpG ORN, in contrast to previously reported respective nucleic acid ligands. These data suggest that CpG ORN represent a novel class of synthetic immunostimulatory nucleic acids with distinct target cells, receptors, and functions from that of previously known immunomodulatory nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号