首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores.  相似文献   

2.
Tryptase, the major mast cell product, is considered to play an important role in airway inflammation and hyperresponsiveness. Tryptase produces different, sometimes opposite, effects on airway responsiveness (bronchoprotection and/or airway contraction). This study was designed to examine the effect of human lung tryptase and activation of protease-activated receptor (PAR)-2 by synthetic activated peptide (AP) SLIGKV-NH(2) on Ca(2+) signaling in human airway smooth muscle (HASM) cells. Immunocytochemistry revealed that PAR-2 was expressed by HASM cells. Tryptase (7.5--30 mU/ml) induced a concentration-dependent transient relative rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) that reached 207 +/- 32 nM (n = 10) measured by indo 1 spectrofluorometry. The protease inhibitors leupeptin or benzamidine (100 microM) abolished tryptase-induced [Ca(2+)](i) increase. Activation of PAR-2 by AP (1-100 microM) also induced a concentration-dependent transient rise in [Ca(2+)](i), whereas the reverse peptide produced no effect. There was a homologous desensitization of the [Ca(2+)](i) response on repeated stimulation with tryptase or AP. U-73122, a specific phospholipase C (PLC) antagonist, xestospongin, an inositol trisphosphate (IP(3))-receptor antagonist, or thapsigargin, a sarcoplamic Ca(2+)-ATPase inhibitor, abolished tryptase-induced [Ca(2+)](i) response, whereas Ca(2+) removal, in the additional presence of EGTA, had no effect. Calphostin C, a protein kinase C inhibitor, increased PAR-2 [Ca(2+)](i) response. Our results indicate that tryptase activates a [Ca(2+)](i) response, which appears as PAR-2 mediated in HASM cells. Signal transduction implicates the intracellular Ca(2+) store via PLC activation and thus via the IP(3) pathway. This study provides evidence that tryptase, which is increasingly recognized as an important mediator in airway inflammation and hyperresponsiveness, is also a potent direct agonist at the site of airway smooth muscle.  相似文献   

3.
We have measured Ca(2+)concentration changes in intracellular Ca(2+)stores ([Ca(2+)](store)) of rat pancreatic acinar cells in primary culture in response to the Ca(2+)mobilizing substances inositol-1,4,5-trisphosphate (IP(3)) and cyclic ADP-ribose (cADPr) using the Ca(2+)-sensitive dye mag Fura-2. We found that in this cell model IP(3)releases Ca(2+)in a quantal manner. Higher Ca(2+)concentration in the stores allowed a response to lower IP(3)concentrations ([IP(3)]) indicating that the sensitivity of IP(3)receptors to IP(3)is regulated by the Ca(2+)concentration in the stores. Cyclic ADPr, that modifies 'Ca(2+)-induced-Ca(2+)-release' (CICR), was also able to release Ca(2+)from intracellular stores of pancreatic acinar cells in primary culture. In comparison to the Ca(2+)ionophore ionomycin, which induced a maximal decrease (100%) in [Ca(2+)](store), a hypermaximal [IP(3)] (10 microM) dropped [Ca(2+)](store)by 87% and cADPr had no further effect. Cyclic ADPr reduced [Ca(2+)](store)by only 56% and subsequent IP(3)addition caused further maximal decrease in [Ca(2+)](store). Furthermore, a maximal [IP(3)] caused the same decrease in [Ca(2+)](store)in all regions of the cell, whereas cADPr dropped the [Ca(2+)](store)between 20 and 80% in different cell regions. From these data we conclude that in primary cultured rat pancreatic acinar cells at least three types of Ca(2+)stores exist. One type possessing both cADPr receptors and IP(3)receptors, a second type possessing only IP(3)receptors, and a third type whose Ca(2+)can be released by ionomycin but neither by IP(3)nor by cADPr.  相似文献   

4.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

5.
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).  相似文献   

6.
Jiann BP  Lu YC  Chang HT  Huang JK  Jan CR 《Life sciences》2002,70(26):3167-3178
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca(2+) indicator. Clomiphene at concentrations between 10-50 microM increased [Ca(2+)](i) in a concentration-dependent manner. The [Ca(2+)](i) signal was biphasic with an initial rise and a slow decay. Ca(2+) removal inhibited the Ca(2+) signal by 41%. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with clomiphene in Ca(2+)-free medium, confirming that clomiphene induced Ca(2+) entry. In Ca(2+)-free medium, pretreatment with 50 microM brefeldin A (to permeabilize the Golgi complex), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca(2+) pump), and 2 microM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 microM clomiphene-induced store Ca(2+) release. Conversely, pretreatment with 50 microM clomiphene in Ca(2+)-free medium abolished the [Ca(2+)](i) increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 microM clomiphene-induced Ca(2+)release was unaltered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 microM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca(2+)](i) increases in PC3 cells by releasing store Ca(2+) from multiple stores in an phospholipase C-independent manner, and by activating Ca(2+) influx; and clomiphene was of mild cytotoxicity.  相似文献   

7.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

8.
Fibroblasts isolated from jaw cysts expressed calcium-sensing receptor (CasR). In the fibroblasts elevated extracellular Ca(2+) ([Ca(2+)](o)) increased fluo-3 fluorescence intensity, and the production of inositol(1,4,5)trisphosphate and active protein kinase C. Phospholipase C inhibitor U-73122 attenuated the Ca(2+)-induced increase in fluo-3 fluorescence intensity. Elevated [Ca(2+)](o) enhanced the expression of cyclooxygenase-2 (COX-2) mRNA and protein, and the secretion of prostaglandin E(2) in the fibroblasts. CasR activator neomycin also increased the expression of COX-2 mRNA, and U-73122 attenuated the Ca(2+)-induced expression of COX-2 mRNA. Elevated [Ca(2+)](o)-induced phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), and U-73122 inhibited the Ca(2+)-induced phosphorylation. The inhibitors for each kinase, PD98059, SB203580, and SP600125, attenuated the Ca(2+)-induced expression of COX-2 mRNA. These results suggest that in jaw cyst fibroblasts elevated extracellular Ca(2+) may enhance COX-2 expression via the activation of ERK1/2, p38 MAPK, and JNK through CasR.  相似文献   

9.
Lin MC  Jan CR 《Life sciences》2002,71(9):1071-1079
The effect of the anti-anginal drug fendiline on intracellular free Ca(2+) levels ([Ca(2+)](i)) in a rabbit corneal epithelial cell line (SIRC) was explored using fura-2 as a fluorescent Ca(2+) indicator. At a concentration above 1 microM, fendiline increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 7 microM. The [Ca(2+)](i) response consisted of an immediate rise and an elevated phase. Extracellular Ca(2+) removal decreased half of the [Ca(2+)](i )signal. Fendiline induced quench of fura-2 fluorescence by Mn(2+) (50 microM), suggesting the presence of Ca(2+) influx across the plasma membrane. This Ca(2+) influx was abolished by La(3+) (50 microM), but was insensitive to dihydropyridines, verapamil and diltiazem. Fendiline (10 microM)-induced store Ca(2+) release was largely reduced by pretreatment with thapsigargin (1 microM) (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+). Conversely, pretreatment with 10 microM fendiline abolished thapsigargin-induced Ca(2+) release. Fendiline (10 microM)-induced Ca(2+) release was not altered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Cumulatively, this study shows that fendiline induced concentration-dependent [Ca(2+)](i )increases in corneal epithelial cells by releasing the endoplasmic reticulum Ca(2+) in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

10.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and cell viability in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The tamoxifen-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca(2+)-free medium, after pretreatment with 1 muM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), tamoxifen-induced [Ca(2+)](i) rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change tamoxifen-induced [Ca(2+)](i) rises. At concentrations between 10 and 50 microM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 microM tamoxifen was not reversed by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca(2+)](i) rises, in a nongenomic manner, by causing Ca(2+) release from the endoplasmic reticulum, and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.  相似文献   

11.
We describe a novel rapid non-genomic effect of 17beta-estradiol (E2) on intracellular Ca(2+) ([Ca(2+)](i)) signalling in the eccrine sweat gland epithelial cell line NCL-SG3. E2 had no observable effect on basal [Ca(2+)](i), however exposure of cells to E2 in the presence of the microsomal Ca(2+) ATPase pump inhibitor, thapsigargin, produced a secondary, sustained increase in [Ca(2+)](i) compared to thapsigargin treatment alone, where cells responded with a transient single spike-like increase in [Ca(2+)](i). The E2-induced increase in [Ca(2+)](i) was not dependent on the presence of extracellular calcium and was completely abolished by ryanodine (100muM). The estrogen receptor antagonist ICI 182,780 (1muM) prevented the E2-induced effects suggesting a role for the estrogen receptor in the release of [Ca(2+)](i) from ryanodine-receptor-gated stores. The E2-induced effect on [Ca(2+)](i) could also be prevented by the protein kinase C delta (PKCdelta)-specific inhibitor rottlerin (10muM), the protein kinase A (PKA) inhibitor Rp-adenosine 3',5'-cyclic monophosphorothioate (200muM) and the MEK inhibitor PD98059 (10muM). We established E2 rapidly activates the novel PKC isoform PKCvarepsilon, PKA and Erk 1/2 MAPK in a PKCdelta and estrogen-receptor-dependent manner. The E2-induced effect was specific to 17beta-estradiol, as other steroids had no effect on [Ca(2+)](i). We have demonstrated a novel mechanism by which E2 rapidly modulates [Ca(2+)](i) release from ryanodine-receptor-gated intracellular Ca(2+) stores. The signal transduction pathway involves the estrogen receptor coupled to a PKC-PKA-Erk 1/2 signalling pathway.  相似文献   

12.
Jan CR  Cheng JS  Roan CJ  Lee KC  Chen WC  Chou KJ  Tang KY  Wang JL 《Steroids》2001,66(6):505-510
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.  相似文献   

13.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

14.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

15.
Melittin, a peptide from bee venom, is thought to be a phospholipase A(2) activator and Ca(2+) influx inducer that can evoke cell death in different cell types. However, the effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability has not been explored in human osteoblast-like cells. This study examined whether melittin altered [Ca(2+)](i) and killed cells in MG63 human osteosarcoma cells. [Ca(2+)](i) changes and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Melittin at concentrations above 0.075 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was abolished by removing extracellular Ca(2+). Melittin-induced Ca(2+) entry was confirmed by Mn(2+) quenching of fura-2 fluorescence at 360 nm excitation wavelength which was Ca(2+)-insensitive. The melittin-induced Ca(2+) influx was unchanged by modulation of protein kinase-C activity with phorbol 12-myristate 13-acetate (PMA) and GF 109203X, or inhibition of phospholipase A(2) with AACOCF(3) and aristolochic acid; but was substantially inhibited by blocking L-type Ca(2+) channels. At concentrations of 0.5 microM and 1 microM, melittin killed 33% and 45% of cells, respectively, via inducing apoptosis. Lower concentrations of melittin failed to kill cells. The cytotoxic effect of 1 microM melittin was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Taken together, these data showed that in MG63 cells, melittin induced a [Ca(2+)](i) increase by causing Ca(2+) entry through L-type Ca(2+) channels in a manner independent of protein kinase-C and phospholipase A(2) activity; and this [Ca(2+)](i) increase subsequently caused apoptosis.  相似文献   

16.
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.  相似文献   

17.
A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.  相似文献   

18.
BACKGROUND: The effect of bradykinin on intracellular free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca(2+) dye. METHODS/RESULTS: Bradykinin (0.1 nM-1 microM) increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 0.5 nM. The [Ca(2+)](i) signal comprised an initial peak and a fast decay which returned to baseline in 2 min. Extracellular Ca(2+) removal inhibited the peak [Ca(2+)](i )signals by 35 +/- 3%. Bradykinin (1 nM) failed to increase [Ca(2+)](i) in the absence of extracellular Ca(2+ )after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor; 1 microM). Bradykinin (1 nM)-induced intracellular Ca(2+) release was nearly abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The [Ca(2+)](i )increase induced by 1 nM bradykinin in Ca(2+)- free medium was abolished by 1 nM HOE 140 (a B2 bradykinin receptor antagonist) but was not altered by 100 nM Des-Arg-HOE 140 (a B1 bradykinin receptor antagonist). Pretreatment with 1 pM pertussis toxin for 5 h in Ca(2+) medium inhibited 30 +/- 3% of 1 nM bradykinin-induced peak [Ca(2+)](i) increase. CONCLUSIONS: Together, this study shows that bradykinin induced [Ca(2+)](i) increases in a concentration-dependent manner, by stimulating B2 bradykinin receptors leading to mobilization of Ca(2+) from the thapsigargin-sensitive stores in a manner dependent on inositol-1,4,5-trisphosphate, and also by inducing extracellular Ca(2+) influx. The bradykinin response was partly coupled to a pertussis toxin-sensitive G protein pathway.  相似文献   

19.
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types.  相似文献   

20.
We find that the adrenergic agonist isoproterenol increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured rat brown adipocytes. At the concentration used (10 microM), isoproterenol-induced Ca(2+) responses were sensitive to block by either alpha(1)- or beta-adrenergic antagonists, suggesting an interaction between these receptor subtypes. Despite reliance on beta-adrenoceptor activation, the Ca(2+) response was not due solely to increases in cAMP because, administered alone, the selective beta(3)-adrenergic agonist BRL-37344 or forskolin did not increase [Ca(2+)](i). However, increased cAMP elicited vigorous [Ca(2+)](i) increases in the presence of barely active concentrations of the alpha-adrenergic agonist phenylephrine or the P2Y receptor agonist UTP. Consistent with isoproterenol recruiting only inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores, endoplasmic reticulum store depletion by thapsigargin blocked isoproterenol-induced Ca(2+) increases, but removal of external Ca(2+) did not. These results argue that increases in cAMP sensitize the IP(3)-mediated Ca(2+) release system in brown adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号