首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During acute hepatic coma following two-stage hepatic devascularization in the rat, profound changes occurred in plasma and whole-brain amino acids and putative neurotransmitters. Brain ammonia, glutamine and GABA were increased, aspartate was decreased, while glutamate was unchanged. An increase in brain tryptophan was accompanied by a similar increase in plasma unbound tryptophan but decreased plasma total tryptophan. These changes occurred in the presence of high plasma levels of the other neutral amino acids, including the branched chain amino acids. Plasma insulin was unchanged while glucagon levels rose, resulting in a decreased insulin to glucagon ratio. These results suggest that while plasma unbound tryptophan may influence brain tryptophan levels, altered plasma concentrations of neutral amino acids which compete with tryptophan for transport into the brain do not contribute to the increase in brain tryptophan observed during acute hepatic coma.  相似文献   

2.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

3.
The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.  相似文献   

4.
Abstract: Rats with portacaval shunts were used as a model of hepatic encephalopathy and compared to sham-operated controls. First, the changes in intermediary metabolites and amino acids in blood and whole brain were characterized and found to be similar at 4 and 7 weeks after shunting. Second, the effects of nutritional therapy on selected metabolites and tryptophan transport into brain were assessed in rats 5 weeks after surgery. Ordinary food was removed and the rats were treated with glucose given either by mouth or intravenously, or intravenous glucose plus branched chain amino acids. Several abnormalities in plasma amino acid concentrations were reversed by treatment. The abnormally high brain uptake index of tryptophan, a consequence of portacaval shunting, was not lowered by any of the treatment regimens; it was even higher in the groups given glucose by mouth and glucose plus amino acids. Calculated competition for entry of tryptophan, phenylalanine, and tyrosine into brain was unchanged (glucose plus amino aicds), or reduced (glucose alone). Brain glutamine content was brought to near normal by all treatments. Infusion of glucose plus branched chain amino acids normalized brain content of tryptophan, phenylalanine, and tyrosine, even though the brain uptake index of tryptophan was higher in this group. Thus, partial or complete reversal of several abnormalities found after portacaval shunting was achieved by removal of oral food and administration of glucose. The addition of branched chain amino acids to the glucose infusion restored brain content of three aromatic amino acids to near normal, by a mechanism which appeared to be unrelated to transport across the blood-brain barrier.  相似文献   

5.
Sustained hyperammonemia resulting from portocaval anastomosis (PCA) in the rat, is accompanied by neurological symptoms and reversible morphological changes in brain, the nature and distribution of which suggest selective vulnerability of certain brain structures. the present study was initiated to investigate the effects of increasing CNS ammonia on the distribution of amino acids in regions of the rat brain in relation to the degree of neurological impairment in PCA rats. Four weeks following PCA, rats were administered ammonium acetate (5.2 mmol/kg, i.p.) to precipitate neurological symptoms of encephalopathy which included diminished locomotor activity, loss of hindlimb extension and righting reflexes and ultimately coma. At various stages during the development of encephalopathy, rats were sacrificed and the amino acids glutamine, glutamate and aspartate measured simultaneously, using a sensitive double-isotope dansyl microassay. Homogenates of the following regions of the CNS were assayed: cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla-pons, spinal cord (gray matter) and spinal cord (white matter). Sustained hyperammonemia associated with PCA alone resulted in a non-uniform 2–4 fold increase of glutamine in all regions of the CNS. Glutamate, on the other hand, was selectively increased in striatum and cerebellum, two regions of brain shown to exhibit early morphologically-characterised astrocytic abnormalities in rats with PCA. Onset of severe neurological dysfunction was accompanied by significantly decreased glutamine and glutamate in striatum and cerebellum. Thus, sustained hyperammonemia in association with portocaval shunting results in region-selective effects with respect to glutamine-glutamate metabolism in the CNS.  相似文献   

6.
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.  相似文献   

7.
The levels and specific radioactivities (SA) of glucose, lactate, pyruvate, α-oxoglutarate and seven amino acids in the brain of toads adapted to fresh water or to an hyperosmotic environment were analysed at various times (5 min–4 h) after an injection of [U-14C]glucose into the bloodstream. The concentrations and SA of glucose, lactate and five amino acids in blood plasma also were measured. In addition, the SA of glutamine, glutamate, aspartate and GABA in brain were determined 30 min after an injection of [1,5-14C]citrate into the cisterna magna. The flow of labelled carbon atoms from glucose to amino acids and related metabolites in the toad brain was qualitatively similar to that in the mammalian brain, but quantitatively less than one-tenth of the rate in the brain of rats. Hyperosmotic adaptation induced a large increase in the levels of glucose and amino acids in the brain without affecting the rate of glucose utilization. The SA of several amino acids relative to the SA of glucose were initially lower in hyperosmotically-adapted toads than in toads adapted to fresh water, presumably because of a greater dilution of isotope by the larger amino acid pools in the hyperosmotically-adapted toads. The rates of synthesis of alanine and glutamine from pyruvate and glutamate, respectively, appeared to increase with hyperosmotic adaptation, but the rate of GABA synthesis from glutamate was unaltered. The SA of α-oxoglutarate and glutamate were similar at all time periods in both groups of toads, an indication that these compounds were interconverted much more rapidly than the rate at which α-oxoglutarate was formed from isocitrate. The SA of lactate in comparison to that of glucose varied but was always considerably lower, even at 4 h after the [14C]glucose injection. After[U-14C]glucose, glutamine had a SA lower than that of glutamate, whereas after the injection of [14C]citrate, glutamine was formed with a SA much higher than that of glutamate. Hence, glutamate in the toad brain exhibited metabolic compartmentation similar to that in rat brain.  相似文献   

8.
—This is a report of the effect of extreme changes in plasma sodium concentration induced by chronic (5 d) water deprivation and hypertonic saline injections and acute (4 h) overhydration with hypotonic glucose or fructose on the water and electrolyte content and levels of selected metabolites in the brains of young mice. In the dehydrated hypernatremic mice (plasma Na+, 186 × 3 mequiv./1) significant increases were found in brain glucose (82%), alanine (16%), aspartate (45%), glutamate (19%), gamma-amino butyrate (34%) and glutamine (42%) concentrations. In striking contrast, water-intoxicated mice (plasma Na+, 110 × 4 mequiv./1) had significantly decreased levels of alanine (17%), aspartate (38%) and glutamate (33%). Significant reductions in brain lactate (30–40%) and malate concentrations (23%) in both groups of experimental mice are suggestive of reduced cerebral metabolic rate. During adaptation to increased or decreased environmental salinity, levels of amino acids in amphibian brain increase or decrease, respectively, to maintain osmotic equilibrium and to limit the loss or gain of water in brain. The data show that a similar protective response can be evoked in mammalian brain.  相似文献   

9.
There is increasing evidence to suggest that hepatic encephalopathy in acute liver failure is the result of altered glutamatergic function. In particular, the high affinity uptake of glutamate is decreased in brain slices and synaptosomes from rats with acute liver failure as well as by exposure of cultured astrocytes to concentrations of ammonia equivalent to those reported in brain in acute liver failure. Both protein and gene expression of the recently cloned and sequenced astrocytic glutamate transporter GLT-1 are significantly reduced in the brains of rats with acute liver failure. Decreased expression of GLT-1 in brain in acute liver failure results in increased extracellular brain glutamate concentrations which correlates with arterial ammonia concentrations and with the appearance of severe encephalopathy and brain edema in these animals. Ammonia-induced reductions in expression of GLT-1 resulting in increased extracellular glutamate concentrations could explain some of the symptoms (hyperexcitability, cerebral edema) characteristic of hepatic encephalopathy in acute liver failure.  相似文献   

10.
Pyrithiamine-induced thiamine-deficiency encephalopathy in the rat shows many neuropathological and biochemical similarities to Wernicke's encephalopathy in humans. Treatment of rats with pyrithiamine resulted in moderate reductions of glutamate in thalamus and pons and in generalized severe reductions of aspartate in pons (by 89%, p less than 0.01), thalamus (by 83%, p less than 0.01), cerebellum (by 53%, p less than 0.01), and cerebral cortex (by 33%, p less than 0.05). Alanine concentrations were concomitantly increased. Activities of the thiamine-dependent enzyme alpha-ketoglutarate dehydrogenase (alpha KGDH) were decreased in parallel with the aspartate decreases; pyruvate dehydrogenase complex activities were unchanged in all brain regions. Following thiamine administration to symptomatic pyrithiamine-treated rats, neurological symptoms were reversed and concentrations of glutamate, aspartate, and alanine, as well as alpha KGDH activities, were restored to normal in cerebral cortex and pons. Aspartate levels and alpha KGDH activities remained below normal values, however, in thalamus. Thus, pyrithiamine treatment leads to reductions of cerebral alpha KGDH and (1) decreased glucose (pyruvate) oxidation resulting in accumulation of alanine and (2) decreased brain content of glutamate and aspartate. Such changes may be of key significance in the pathophysiology of the reversible and irreversible signs of Wernicke's encephalopathy in humans.  相似文献   

11.
Changes in brain amino acid uptake and metabolism have been proposed as a possible etiological factor in hepatic encephalopathy. By use of a brain dialysis technique (a thin tube implanted in the brain of the living animal), the extracellular amino acid concentrations in the striatum of portacaval (PC)-shunted and sham-operated rats were measured. Leucine, phenylalanine, methionine, and glutamine were increased two- to sixfold in the PC-shunted rats, whilst no changes were seen for GABA, valine, glutamate, or isoleucine, confirming previous reports. Aspartate levels were 350% higher in the PC-shunted rats, and this rise, as well as that of phenylalanine, was significantly correlated with the lower motor activity observed in the PC-shunted rats, suggesting a possible importance of these amino acids in the etiology of hepatic encephalopathy. The amino acid concentrations measured in whole blood demonstrated the well-known pattern of low levels of branched-chain amino acids and increased concentrations of phenylalanine, glutamine, and histidine.  相似文献   

12.
Mechanisms have been examined by which hyperosmotic blood plasma might elevate the levels of aspartate and glutamate in the brain of the toadBufo boreas. CO2 fixation was assessed by two in vivo methods using [2-14C]glucose injected intracisternally. Thirty minutes after injection, the14C labeling of glutamate and aspartate was more than 100 times greater in brain than in liver. In brain tissues, 40+% of14C atoms appeared to be incorporated into aspartate via the pyruvate carboxylase pathway. Brain tissues of control toads and toads adapting or adapted to hyperosmotic plasma osmolality revealed no differences in the rate of CO2 fixation as related to glucose utilization or tissue pool sizes of glutamate and aspartate. Elevated levels of these amino acids in blood plasma preceded increases in brain tissues. Carbon atoms required during hyperosmotic adaptation for expansion of amino acid pools in brain tissues may, in part, originate from amino acids in blood but apparently not from CO2 fixation in brain.  相似文献   

13.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

14.
In confirmation of the findings of Gaitonde et al. (1974), a decrease in the brain concentration of threonine and serine, and an increase in glycine, were observed in rats maintained on a thiamin-deficient diet. Similar changes were found in the blood, and the concentration of several other amino acids in the blood decreased significantly. There was a correlation between the concentrations of threonine, serine, aspartate and asparagine in the brain and blood. In experiments in which [U-14C]threonine was injected into rats most of the radioactivity in the brain and blood of control rats was, as expected, in threonine in the acid soluble metabolites. In contrast, a considerable proportion of radioactivity was also found in other amino acids, namely glutamate, glutamine, aspartate, gamma-aminobutyrate and alanine, in the brain of thiamin-deficient rats. [U-14C]Threonine was also converted into 14C-labelled lactate and glucose, but the extent of this conversion was severalfold higher in thiamin-deficient than in control rats. This finding gave evidence of the stimulation in thiamin-deficient rats of the catabolism of [U-14C]threonine to [14C]lactate by the aminoacetone pathway catalysed by threonine dehydrogenase, and into succinate via propionate by the alpha-oxobutyrate pathway catalysed by threonine dehydratase (deaminase). The measurement of specific radioactivities of glutamate, aspartate and glutamine after injection of [U-14C]threonine, indicated a stimulation of the activities of threonine dehydrogenase and threonine dehydratase (deaminase) in the brain of thiamin-deficient rats. The specific radioactivities of glutamate, asparatate and glutamine int he brain were consistent with an alteration in the metabolism of threonine, mainly in the 'large' compartment of the brain of thiamin-deficient rats. The measurement of relative specific radioactivity of proteins after injection of [U-14C]threonine indicated a marked decrease in the synthesis of proteins, mainly in the liver of thiamin-deficient rats.  相似文献   

15.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

16.
The nucleoside guanosine (GUO) increases glutamate uptake by astrocytes and acts as antioxidant, thereby providing neuroprotection against glutamatergic excitotoxicity, as we have recently demonstrated in an animal model of chronic hepatic encephalopathy. Here, we investigated the neuroprotective effect of GUO in an acute ammonia intoxication model. Adult male Wistar rats received an intraperitoneal (i.p.) injection of vehicle or GUO 60 mg/kg, followed 20 min later by an i.p. injection of vehicle or 550 mg/kg of ammonium acetate. Afterwards, animals were observed for 45 min, being evaluated as normal, coma (i.e., absence of corneal reflex), or death status. In a second cohort of rats, video-electroencephalogram (EEG) recordings were performed. In a third cohort of rats, the following were measured: (i) plasma levels of glucose, transaminases, and urea; (ii) cerebrospinal fluid (CSF) levels of ammonia, glutamine, glutamate, and alanine; (iii) glutamate uptake in brain slices; and (iv) brain redox status and glutamine synthetase activity in cerebral cortex. GUO drastically reduced the lethality rate and the duration of coma. Animals treated with GUO had improved EEG traces, decreased CSF levels of glutamate and alanine, lowered oxidative stress in the cerebral cortex, and increased glutamate uptake by astrocytes in brain slices compared with animals that received vehicle prior to ammonium acetate administration. This study provides new evidence on mechanisms of guanine-derived purines in their potential modulation of glutamatergic system, contributing to GUO neuroprotective effects in a rodent model of by acute ammonia intoxication.  相似文献   

17.
AMINO ACID METABOLISM AND AMMONIA FORMATION IN BRAIN SLICES   总被引:2,自引:2,他引:0  
The formation of ammonia and changes in the contents of free amino acids have been investigated in slices of guinea pig cerebral cortex incubated under the following conditions: (1) aerobically in glucose-free saline; (2) aerobically in glucose-free saline containing 10 mM-bromofuroic acid, an inhibitor of glutamate dehydrogenase (EC 1.4.1.2); (3) aerobically in saline containing 11-1 mM-glucose and (4) anaerobically in glucose-free saline. Ammonia was formed at a steady rate aerobically in glucose-free medium. The formation of ammonia was largely suppressed in the absence of oxygen or in the presence of glucose whereas the inhibitor of glutamate dehydrogenase produced about 50 per cent inhibition. Other inhibitors of glutamate dehydrogenase exerted a similar effect. Ammonia formation was also inhibited by some inhibitors of aminotransferases but not by others. Inhibition was generally more pronounced during the second and third hour of incubation. With the exception of glutamine which decreased slightly, the contents of all amino acids increased markedly during the anaerobic incubation. During aerobic incubation in a glucose-free medium, there was an almost complete disappearance of glutamic acid and GABA. Glutamine also decreased, but to a relatively smaller extent. The content of all other amino acids increased during aerobic incubation in glucose-free medium, although to a lesser extent than under anaerobic conditions. The greater increase of amino acids appearing anaerobically in comparison to the increase or decrease occurring under aerobic conditions corresponded closely to the greater amount of ammonia formed aerobically over that formed anaerobically. This finding is interpreted as indicating a similar degree of proteolysis under anaerobic and aerobic conditions; aerobically, the amino acids are partly metabolized with the concomitant liberation of ammonia. In glucose-supplemented medium, the content of glutamine was markedly increased. The content of glutamate and aspartate remained unchanged, whereas that of some other amino acids increased but to a lesser extent than in the absence of glucose. Proteolysis in the presence of glucose was estimated at about 65 per cent of that in its absence. In the presence of bromofuroate the rate of disappearance of glutamate was unchanged, but there was a larger increase in the content of aspartate and a smaller decrease of GABA and glutamine. Other changes did not differ significantly from those observed in the absence of bromofuroate. We conclude that the metabolism of amino acids in general and of glutamic acid in particular differs according to whether they are already present within the brain slice or are added to the incubation medium. Only the endogenous amino acids appear to be able to serve as precursors of ammonia and as substrates for energy production.  相似文献   

18.
Abstract: Brain edema in hepatic encephalopathy has been associated with circulating ammonia that is metabolized to glutamine. We measured alterations in blood chemistry and brain regional specific gravity and ion and amino acid contents in models of simple hyperammonemia and liver failure induced by daily administrations of ammonium acetate (AAc) or thioacetamide (TAA), respectively. Serum and brain ammonia increased to similar levels (200 and 170% of control, respectively) in both experimental groups. Serum transaminase activities increased 10-fold in animals injected with TAA but were unchanged in animals given AAc injections. In both experimental groups glutamine was elevated in cerebral white matter, cerebral gray matter, and basal ganglia, whereas brain tissue specific gravity decreased in all brain regions, indicating edema formation. In the AAc group, we observed a decrease in glutamate and taurine contents concomitant with the development of brain edema. In these animals, cerebral gray matter specific gravity and taurine contents returned to control levels 24 h after the third AAc injection. TAA-injected animals demonstrated similar decreases in brain tissue specific gravity, whereas glutamine, glutamate, and taurine contents were all elevated. During hepatic encephalopathy, ammonia-induced changes in brain amino acid content may contribute to brain edema development.  相似文献   

19.
Abstract: Recent work indicates an important role for excitatory amino acids in behavioral sensitization to amphetamine. We therefore examined, using in vivo microdialysis in awake rats, the effects of amphetamine on efflux of glutamate, aspartate, and serine in the ventral tegmental area and nucleus accumbens, brain regions important for the initiation and expression of amphetamine sensitization, respectively. Water-pretreated and amphetamine-pretreated rats were compared to determine if sensitization altered such effects. In both brain regions, Ca2+-dependent efflux of glutamate accounted for ∼20% of basal glutamate efflux. A challenge injection of water or 2.5 mg/kg of amphetamine did not significantly alter glutamate, aspartate, or serine efflux in the ventral tegmental area or nucleus accumbens of water- or amphetamine-pretreated rats. However, 5 mg/kg of amphetamine produced a gradual increase in glutamate efflux in both regions that did not reverse, was observed in both water- and amphetamine-pretreated rats, and was prevented by haloperidol. Although increased glutamate efflux occurred with too great a delay to mediate acute behavioral responses to amphetamine, it is possible that repeated augmentation of glutamate efflux during repeated amphetamine administration results in compensatory changes in levels of excitatory amino acid receptors in the ventral tegmental area and nucleus accumbens that contribute to development or expression of amphetamine sensitization.  相似文献   

20.
The etiologic relationship between disturbances in metabolism of amino acids and amines and hepatic coma was investigated by examining the effects of diets containing various mixtures of amino acids on brain amine metabolism in rats with a portacaval shunt, using a method for simultaneous analysis of amino acids and amines. Rats with a portacaval shunt were fed on four different amino acid compositions with increased amounts of various amino acids suspected to be etiologically related to hepatic coma, such as methionine, phenylalanine, tyrosine, and tryptophan. The animals were killed 4 weeks after operation. During the experimental period, these animals did not become comatose, but exhibited various behavioral abnormalities. Marked increase in the plasma and brain levels of the augmented amino acids, especially methionine and tyrosine, were observed in rats with a portacaval shunt. Brain noradrenaline, dopamine, and serotonin levels were significantly decreased when the brain tyrosine level was increased. These results indicate that in rats with a portacaval shunt the dietary levels of amino acids greatly influence the brain levels of both amino acids and transmitter amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号