首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dimorphism and virulence in Candida albicans   总被引:8,自引:0,他引:8  
Two regulatory pathways govern filamentation in the pathogenic fungus Candida albicans. Recent virulence studies of filamentation regulatory mutants argue that both yeast and filamentous forms have roles in infection. Filamentation control pathways seem closely related in C. albicans and in Saccharomyces cerevisiae, thus permitting speculation about C. albicans filamentation genes not yet discovered.  相似文献   

3.
4.
5.
Two-component signal transduction in human fungal pathogens   总被引:3,自引:0,他引:3  
Signal transduction pathways provide mechanisms for adaptation to stress conditions. One of the most studied of these pathways is the HOG1 MAP kinase pathway that in Saccharomyces cerevisiae is used to adapt cells to osmostress. The HOG1 MAPK has also been studied in Candida albicans, and more recently observations on the Hog1p functions have been described in two other human pathogens, Aspergillus fumigatus and Cryptococcus neoformans. The important, but not surprising, concept is that this pathway is used for different yet similar functions in each of these fungi, given their need to adapt to different environmental signals. Current studies of C. albicans focus upon the identification of two-component signal proteins that, in both C. albicans and S. cerevisiae, regulate the HOG1 MAPK. In C. albicans, these proteins regulate cell wall biosynthesis (and, therefore, adherence to host cells), osmotic and oxidant adaptation, white-opaque switching, morphogenesis, and virulence of the organism.  相似文献   

6.
7.
Saccharomyces cerevisiae transformed with Candida albicans ALA1/ALS5 exhibits adherence properties similar to C. albicans. Adherence of the fungi to immobilized proteins involves hydrogen bonds, is stable to shear forces, and is resistant to competition from various biological molecules. The specificity determinants of target recognition in Ala1/Als5p-mediated adherence are not known. To determine features of target recognition, proteins and small peptides were covalently coupled at the N-terminus to the surface of carboxylate-modified magnetic beads. C. albicans yeast cells, germ tubes and pseudohyphae and S. cerevisiae expressing the adhesin, Ala1/Als5p, adhered to beads coated with fibronectin, laminin, type IV collagen, bovine serum albumin, and casein. No adherence to beads was observed if a single amino acid was coupled to the beads. However, 10-mer homopolymers of threonine, serine, and alanine served as ligands for adherence. The presence of a minimum of four contiguous threonine residues in a peptide was required for maximal adherence. Coupling of 10-mer peptides from fibronectin and Ala1/Als5p each possessing 5-7 threonine or serine residues also initiated adherence. On the other hand, a collagen and a fibronectin 10-mer peptide with few threonine and serine residues and lysine at the C-terminus did not serve as adherence ligands. Both of them are converted to adherence ligands by adding threonine or serine residues at the C-terminus or removing the lysine residue and adding threonine residues anywhere in the peptide. The presence of lysine at the C-terminus may have resulted in coupling of the peptides at both the N- and C-termini, thus making the threonine residues inaccessible for adherence. Thus, Ala1/Als5p recognizes patches of certain amino acids, which must be accessible before adherence will occur.  相似文献   

8.
9.
The human fungal pathogen Candida albicans colonizes and invades a wide range of host tissues. Adherence to host constituents plays an important role in this process. Two members of the C. albicans Als protein family (Als1p and Als5p) have been found to mediate adherence; however, the functions of other members of this family are unknown. In this study, members of the ALS gene family were cloned and expressed in Saccharomyces cerevisiae to characterize their individual functions. Distinct Als proteins conferred distinct adherence profiles to diverse host substrates. Using chimeric Als5p-Als6p constructs, the regions mediating substrate-specific adherence were localized to the N-terminal domains in Als proteins. Interestingly, a subset of Als proteins also mediated endothelial cell invasion, a previously unknown function of this family. Consistent with these results, homology modeling revealed that Als members contain anti-parallel beta-sheet motifs interposed by extended regions, homologous to adhesins or invasins of the immunoglobulin superfamily. This finding was confirmed using circular dichroism and Fourier transform infrared spectrometric analysis of the N-terminal domain of Als1p. Specific regions of amino acid hypervariability were found among the N-terminal domains of Als proteins, and energy-based models predicted similarities and differences in the N-terminal domains that probably govern the diverse function of Als family members. Collectively, these results indicate that the structural and functional diversity within the Als family provides C. albicans with an array of cell wall proteins capable of recognizing and interacting with a wide range of host constituents during infection.  相似文献   

10.
The Candida albicans INT1 gene is important for hyphal morphogenesis, adherence, and virulence (C. Gale, C. Bendel, M. McClellan, M. Hauser, J. M. Becker, J. Berman, and M. Hostetter, Science 279:1355-1358, 1998). The ability to switch between yeast and hyphal morphologies is an important virulence factor in this fungal pathogen. When INT1 is expressed in Saccharomyces cerevisiae, cells grow with a filamentous morphology that we exploited to gain insights into how C. albicans regulates hyphal growth. In S. cerevisiae, INT1-induced filamentous growth was affected by a small subset of actin mutations and a limited set of actin-interacting proteins including Sla2p, an S. cerevisiae protein with similarity in its C terminus to mouse talin. Interestingly, while SLA2 was required for INT1-induced filamentous growth, it was not required for polarized growth in response to several other conditions, suggesting that Sla2p is not required for polarized growth per se. The morphogenesis checkpoint, mediated by Swe1p, contributes to INT1-induced filamentous growth; however, epistasis analysis suggests that Sla2p and Swe1p contribute to INT1-induced filamentous growth through independent pathways. The C. albicans SLA2 homolog (CaSLA2) complements S. cerevisiae sla2Delta mutants for growth at 37 degrees C and INT1-induced filamentous growth. Furthermore, in a C. albicans Casla2/Casla2 strain, hyphal growth did not occur in response to either nutrient deprivation or to potent stimuli, such as mammalian serum. Thus, through analysis of INT1-induced filamentous growth in S. cerevisiae, we have identified a C. albicans gene, SLA2, that is required for hyphal growth in C. albicans.  相似文献   

11.
12.
Both mitogen-activated protein kinases and cyclin-dependent kinases play a role in hyphal development in Candida albicans. Using an oligonucleotide probe-based screen, we have isolated a new member of the Cdc2 kinase subfamily, designated Crk1 (Cdc2-related kinase). The protein sequence of Crk1 is most similar to those of Saccharomyces cerevisiae Sgv1 and human Pkl1/Cdk9. In S. cerevisiae, CRK1 suppresses some, but not all, of the defects associated with an sgv1 mutant. Deleting both copies of CRK1 in C. albicans slows growth slightly but leads to a profound defect in hyphal development under all conditions examined. crk1/crk1 mutants are impaired in the induction of hypha-specific genes and are avirulent in mice. Consistent with this, ectopic expression of the Crk1 kinase domain (CRK1N) promotes filamentous or invasive growth in S. cerevisiae and hyphal development in C. albicans. The activity of Crk1 in S. cerevisiae requires Flo8 but is independent of Ste12 and Phd1. Similarly, Crk1 promotes filamentation through a route independent of Cph1 and Efg1 in C. albicans. RAS1(V13) can also activate filamentation in a cph1/cph1 efg1/efg1 double mutant. Interestingly, CRK1N produces florid hyphae in ras1/ras1 strains, while RAS1(V13) generates feeble hyphae in crk1/crk1 strains.  相似文献   

13.
The FLO11-encoded flocculin is required for a variety of important phenotypes in Saccharomyces cerevisiae, including flocculation, adhesion to agar and plastic, invasive growth, pseudohyphae formation and biofilm development. We present evidence that Flo11p belongs to the Flo1-type class of flocculins rather than to the NewFlo class. Both Flo1-type and NewFlo yeast flocculation are inhibited by mannose. NewFlo flocculation, however, is also inhibited by several other carbohydrates including glucose, maltose and sucrose. These differences have in at least one case been shown to reflect differences in the structure of the carbohydrate-binding site of the flocculins. We report that Flo11p-dependent flocculation is inhibited by mannose, but not by glucose, maltose or sucrose. Furthermore, Flo11p contains a peptide sequence highly similar to one that has been shown to characterise Flo1-type flocculins. Further characterisation of the properties of Flo11p-dependent flocculation revealed that it is dependent on calcium, occurs only at cell densities greater than 1 x 10(8) ml(-1), and only occurs at acidic pH.  相似文献   

14.
15.
16.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.  相似文献   

17.
Candidiasis now represents the fourth most frequent nosocomial infection both in the United States and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. The pathogenic potential of C. albicans is intimately related to certain key processes, including biofilm formation and filamentation. Ddr48p is a damage response protein that is significantly upregulated during both biofilm formation and filamentation, but its actual function is unknown. Previous studies have indicated that this protein may be essential in C. albicans but not Saccharomyces cerevisiae. Here we examined the function of Ddr48p and investigated the role of this protein in biofilm formation and filamentation. We demonstrated that this protein is not essential in C. albicans and appears to be dispensable for filamentation. However, DDR48 is required for the flocculation response stimulated by 3-aminotriazole-induced amino acid starvation. Furthermore, we examined the response of this deletion strain to a wide variety of environmental stressors and antifungal compounds. We observed several mild sensitivity or resistance phenotypes and also found that Ddr48p contributes to the DNA damage response of C. albicans. The results of this study reveal that the role of this highly expressed protein goes beyond a general stress response and impinges on a key facet of pathogenesis, namely, the ability to sense and respond to changes in the host environment.  相似文献   

18.
为了获得高效的脂肪酶毕赤酵母表面展示系统,利用来自酿酒酵母絮凝素蛋白Flo1的N端874个氨基酸残基(FS)和C端的1101个氨基酸残基(FL)作为锚定蛋白分别构建了2套载体系统.带有前肽的米黑根毛霉脂肪酶(ProRML)克隆到构建的2套展示载体中,使米黑根毛霉脂肪酶(RML)分别以N端锚定或C端锚定的方式实现在毕赤酵母细胞表面的展示.利用RMLC端的Flag标签,通过流式细胞术和激光扫描共聚焦显微镜检测2套系统中RML在酵母表面的展示情况.研究发现,N端锚定于酵母表面的展示酶FSR以pNPC为底物时,水解活力达到了105.3U/g,大约为C端锚定的展示酶FLR活力的2倍.同时FSR比FLR具有更宽的温度、pH作用范围和更好的热稳定性.与游离酶和固定化酶相比,展示酶FSR也表现出更为优良的热稳定性.结果提示,基于Flo1N端锚定的展示系统更适合展示活性中心近C端的脂肪酶,推动了展示酶的进一步研究和开发.  相似文献   

19.
20.
Candida albicans ECM33 encodes a glycosylphosphatidylinositol-linked cell wall protein that is important for cell wall integrity. It is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis. To identify potential mechanisms through which Ecm33p contributes to virulence, we investigated the interactions of C. albicans ecm33Delta mutants with endothelial cells and the FaDu oral epithelial cell line in vitro. The growth rate of blastospores of strains containing either one or no intact copies of ECM33 was 50% slower than that of strains containing two intact copies of ECM33. However, all strains germinated at the same rate, forming similar-length hyphae on endothelial cells and oral epithelial cells. Strains containing either one or no intact copies of ECM33 had modestly reduced adherence to both types of host cells, and a markedly reduced capacity to invade and damage these cells. Saccharomyces cerevisiae expressing C. albicans ECM33 did not adhere to or invade epithelial cells, suggesting that Ecm33p by itself does not act as an adhesin or invasin. Examination of ecm33Delta mutants by transmission electron microscopy revealed that the cell wall of these strains had an abnormally electron-dense outer mannoprotein layer, which may represent a compensatory response to reduced cell wall integrity. The hyphae of these mutants also had aberrant surface localization of the adhesin Als1p. Collectively, these results suggest that Ecm33p is required for normal cell wall architecture as well as normal function and expression of cell surface proteins in C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号