首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian neural crest cells migrating along the trunk ventral pathway are distributed throughout the rostral half of the sclerotome with the exception of a neural crest cell-free space of approximately 85 microns width surrounding the notochord. To determine if this neural crest cell-free space results from the notochord inhibiting neural crest cell migration, a length of quail notochord was implanted lateral to the neural tube along the neural crest ventral migratory pathway of 2-day chicken embryos. The subsequent distribution of neural crest cells was analyzed in embryos fixed 2 days after grafting. When the donor notochord was isolated using collagenase, neural crest cells avoided the ectopic notochord and were absent from the area immediately surrounding the implant (mean distance of 43 microns). The neural crest cell-free space was significantly less when notochords were isolated using trypsin or chondroitinase digestion and was completely eliminated when notochords were fixed with paraformaldehyde or methanol prior to implantation. The implanted notochords did not appear to affect the overall number of neural crest cells, and therefore were unlikely to exert this effect by altering their viability. These results suggest that the notochord produces a substance that can inhibit neural crest cell migration and that this substance is trypsin and chondroitinase labile.  相似文献   

2.
Summary Cells of the resting cambium contain vesiculate smooth endoplasmic reticulum, free ribosomes, oil droplets, and protein bodies. There are comparatively few vacuoles, and these are small. The nucleus is fairly central within the cell and is surrounded by a cluster of plastids and mitochondria. Active cambial cells and young differentiating xylem elements are highly vacuolate, contain rough endoplasmic reticulum and polyribosomes, the Golgi apparatus is active in the production of vesicles, and the distribution of organelles is a function of the vacuolation of the cell.It is suggested that the lipid droplets and protein bodies are storage materials which are required during the first stages of differentiation at the beginning of the growing period.  相似文献   

3.
Embryonic chick notochords were studied during their metabolically active and involuting periods for the expression of collagen type I and II. The staining was carried out on notochords in vivo at stage 20 and stage 35 and on mesenchyme-contaminated and mesenchyme-free notochords at stage 20, which were cultured in vitro for 6 days. The results show that type II collagen is demonstrable in the notochords, at all the examined stages, both in vivo and in vitro. However, the expression of type I collagen was stage-dependent in vivo and in vitro. At stage 20, the perinotochordal sheath is positively immunostained for collagen type I, but the notochord itself is negative. At stage 35, the perinotochordal sheath as well as the notochord are positively immunostained for collagen type I. The mesenchyme-contaminated and the mesenchyme-free notochords and their sheaths are also positively immunostained for the type I collagen after6 days in vitro. The current results, at late developmental stages, indicate that the involuting notochords express collagen type I, which seems not to be altered by changing the micro-environment in vivo.  相似文献   

4.
The notochords of three normal, 35-day Macaca mulatta embryos were examined ultrastructurally. Notochordal cells had numerous polysomes and ribosomes, and some rough endoplasmic reticulum, mitochondria, Golgi complexes, coated vesicles, and secretory granules. A discontinuous basal lamina surrounded the notochord. Intercellular channels and the perinotochordal sheath contained fibrils. It was found that the ultrastructure of the rhesus monkey notochord at stage 17 resembles that of the chick and mouse.  相似文献   

5.
We have examined the biomechanical development of the notochord of Xenopus early tail-bud embryos by: (1) quantifying morphological and mechanical changes in the embryo during stages 20-28, and (2) conducting manipulative experiments to elucidate mechanical roles of various components of the notochord. The notochord, which is composed of a stack of flat cells surrounded by a connective tissue sheath, elongates dramatically and begins straightening between stages 21 and 25. At this time the fiber density in the notochord sheath goes up, the osmotic activity of the notochord cells increases, vacuoles within these cells swell, the internal pressure of the notochord increases 2- to 3-fold, and the flexural stiffness of the notochord rises by an order of magnitude. We suggest that the tendency of the notochord cells to osmotically swell is resisted by the sheath, thereby permitting the internal pressure to rise. This pressure increase results in the greater stiffness that permits the notochord to elongate and straighten without being buckled by the surrounding tissues.  相似文献   

6.
Chordin is a tissue-specific protein antigen of notochord. Earlier this protein was discovered in the notochords of sturgeon (Acipenseridae) species; the notochord-specific antigenic determinants were detected in the notochord residues of teleost fish species and in notochord derivatives (nuclei pulposi) of mammals. Using the RIA technique, extracts from 35 samples of normal, fetal and tumour tissues of man were screened for chordin. Among other tissue samples tested, extracts from fetal brain and rectal adenocarcinoma exhibited marked cross-reactivity towards antibodies against chordin. Cross-reactivity towards chordin was observed in rabbit brain extract. This extract contained an antigen which was immunologically related (but not fully identical) to chordin. In total, in this and previous studies, 58 samples of fish and mammalian tissues were analyzed for chordin. However, antigenic determinants of chordin were identified only in extracts prepared from the notochords and nuclei pulposi as well as from brain and rectal adenocarcinoma. These findings suggest that chordin is an antigen with a restricted tissue specificity.  相似文献   

7.
Biochemical specificity of Xenopus notochord   总被引:5,自引:0,他引:5  
The biochemical composition and biosynthetic activity of Xenopus notochord were examined and compared with those of chick and mouse notochord. The notochords of all three species contain type-II collagen, and the notochords of Xenopus and chick synthesize a soluble glycoprotein with a molecular mass of 86 kilodaltons (kd). Mouse embryos were not tested for this molecule, because their notochords are too small to be dissected out. Most interestingly, Xenopus and chick notochords share a keratan-sulphate-containing proteoglycan which appears to be absent from mouse notochord. The presence or absence of keratan sulphate in the notochords of the different species reflects its presence or absence in cartilage. Since one role of the notochord in vivo is to stimulate chondrogenesis in the sclerotomes of the somites, this result provides support for the view that cells responding to the extracellular matrix produced by one tissue do so by increasing their production of the same matrix components.  相似文献   

8.
9.
As a result of a chemical genetic screen for modulators of metalloprotease activity, we report that 2-mercaptopyridine-N-oxide induces a conspicuous undulating notochord defect in zebrafish embryos, a phenocopy of the leviathan mutant. The location of the chemically-induced wavy notochord correlated with the timing of application, thus defining a narrow chemical sensitivity window during segmentation stages. Microscopic observations revealed that notochord undulations appeared during the phase of notochord cell vacuolation and notochord elongation. Notochord cells become swollen as well as disorganized, while electron microscopy revealed disrupted organization of collagen fibrils in the surrounding sheath. We demonstrate by assay in zebrafish extracts that 2-mercaptopyridine-N-oxide inhibits lysyl oxidase. Thus, we provide insight into notochord morphogenesis and reveal novel compounds for lysyl oxidase inhibition. Taken together, these data underline the utility of small molecules for elucidating the dynamic mechanisms of early morphogenesis and provide a potential explanation for the recently established role of copper in zebrafish notochord formation.  相似文献   

10.
The ascidian notochord forms through simultaneous invagination and convergent extension of a monolayer epithelial plate. Here we combine micromanipulation with time lapse and confocal microscopy to examine how notochord-intrinsic morphogenetic behaviors and interactions with surrounding tissues, determine these global patterns of movement. We show that notochord rudiments isolated at the 64-cell stage divide and become motile with normal timing; but, in the absence of interactions with non-notochordal tissues, they neither invaginate nor converge and extend. We find that notochord formation is robust in the sense that no particular neighboring tissue is required for notochord formation. Basal contact with either neural plate or anterior endoderm/lateral mesenchyme or posterior mesoderm are each alone sufficient to ensure that the notochord plate forms and extends a cylindrical rod. Surprisingly, the axis of convergent extension depends on the specific tissues that contact the notochord, as do other patterns of cell shape change, movement and tissue deformation that accompany notochord formation. We characterize one case in detail, namely, embryos lacking neural plates, in which a normal notochord forms but by an entirely different trajectory. Our results show ascidian notochord formation to be regulative in a fashion and to a degree never before appreciated. They suggest this regulative behavior depends on a complex interplay between morphogenetic tendencies intrinsic to the notochord plate and instructive and permissive interactions with surrounding tissues. We discuss mechanisms that could account for these data and what they imply about notochord morphogenesis and its evolution within the chordate phylum.  相似文献   

11.
In this study we examined the Golgi apparatus of avian notochord transplants excised from 2-day-old (E2) chick embryos and grafted isochronically into a chick host either in a medial-ventral position, next to the host notochord, or in a superficial position under the ectoderm laterally or dorsally to the neural tube. The operated embryos were examined from E2 to E8. The diameters, the cytoplasmic vacuolization and the immunostained Golgi apparatus were identical between the endogenous and ventrally grafted notochords, as well as between host-and superficially transplanted notochords when observed at E2. In contrast, from E4 to E8, the size of the notochords grafted dorsally or laterally to the neural tube was significantly smaller than the host, while the cytoplasmic vacuolization and the degree of fragmentation of the Golgi apparatus were significantly less than in the host notochords. These results show that environmental and position-specific factors influence the developmental program and the secretory activity of the notochordal cells.  相似文献   

12.
In the present investigation, evidence is presented directly implicating proteoglycans produced by the embryonic notochord in the control of somite chondrogenesis. It has been demonstrated by several histochemical techniques that during the period of its interaction with somites, the notochord synthesizes perinotochordal proteoglycans, and these proteoglycans have been shown to contain chondroitin 4-sulfate (40%), chondroitin 6-sulfate (40%), and heparan sulfate (20%). Dissection of notochords from embryos with the aid of a brief treatment with trypsin results in the removal of perinotochordal extracellular matrix materials including proteoglycans, while dissection of notochords without the aid of enzyme treatment or with a low concentration of collagenase results in their retention. There is a considerable increase in the rate and amount of cartilage formation and a corresponding 2 to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated by somites cultured in association with notochords dissected under conditions in which perinotochordal materials are retained. Treatment of collagenase-dissected or freely dissected notochords with highly purified enzymes (chondroitinase ABC, AC, and testicular hyaluronidase) which specifically degrade proteoglycans causes a loss of histochemically detectable perinotochordal proteoglycans. These notochords are considerably impaired in their ability to support in vitro somite chondrogenesis. In addition, when trypsin-treated notochords are cultured (“precultured”) for 24 hr on nutrient agar (in the absence of somites), perinotochordal material reaccumulates. Somites cultured in association with such “precultured” notochords exhibit considerable increase in the amount of cartilage formed and a 2- to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated as compared to somites cultured in association with trypsin-treated notochords which have not been “precultured.” This observation indicates that trypsin-treated notochords reacquire their ability to maximally stimulate in vitro somite chondrogenesis by resynthesizing and accumulating perinotochordal material. Finally, “precultured” notochords treated with chondroitinase to remove perinotochordal proteoglycans are considerably impaired in their ability to support in vitro somite chondrogenesis. These observations are consonant with the concept that proteoglycans produced by the embryonic notochord play an important role in somite chondrogenesis.  相似文献   

13.
The medulla of the unconstricted notochords of the shortnose sturgeon, Acipenser brevirostratus, and African lungfish, Protopterus annectens, and the cellular component of the intervertebral joint tissue of the teleost fish, Perca flavescens, are comprised of cells with a large central vacuole. Previous studies on the fine structure of this tissue revealed that the cytoplasm surrounding these vacuoles consists of 10-nm-diameter intermediate filaments. Since in mammals there are a large number of tissue-specific types of intermediate filaments, this study uses antibodies to mammalian intermediate filaments to determine the type of filaments present in the notochord cells of bony fishes. Positive labeling using a polyclonal antibody to human skin keratins is observed in the cytoplasm of the notochord cells in the intervertebral tissues of Perca. These tissues are also probed with the AE series antibodies that label keratins found in mammalian epithelial cells. In both Protopterus and Acipenser the peripheral cytoplasm of the notochord cells is labeled with all three AE antibodies. In Perca only the AE3 antibody probe produces positive staining. These staining patterns are consistent with previous studies on the localization of cytokeratins in fish tissues and indicate that the intermediate filaments in the notochord cells of bony fishes are immunologically similar to the mammalian keratins. J. Morphol. 236:105–116, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Grafting experiments previously have established that the notochord affects dorsoventral polarity of the neural tube by inducing the formation of ventral structures such as motor neurons and the floor plate. Here, we examine if the notochord inhibits formation of dorsal structures by grafting a notochord within or adjacent to the dorsal neural tube prior to or shortly after tube closure. In all cases, neural crest cells emigrated from the neural tube adjacent to the ectopic notochord. When analyzed at stages after ganglion formation, the dorsal root ganglia appeared reduced in size and shifted in position in embryos receiving grafts. Another dorsal cell type, commissural neurons, identified by CRABP and neurofilament immunoreactivity, differentiated in the vicinity of the ectopic notochord. Numerous neuronal cell bodies and axonal processes were observed within the induced, but not endogenous, floor plate 1 to 2 days after implantation but appeared to be cleared with time. These results suggest that dorsally implanted notochords cannot prevent the formation of neural crest cells or commissural neurons, but can alter the size and position of neural crest-derived dorsal root ganglia.  相似文献   

15.
The cells that are normally fated to form notochord occupy a region at the rostral tip of the primitive streak at late gastrula/early neurula stages of avian and mammalian development. If these cells are surgically removed from avian embryos in culture, a notochord will nonetheless form in the majority of cases. The origin of this reconstituted notochord previously had not been investigated and was the objective of this study. Chick embryos at late gastrulal early neurula stages were cultured, and the rostral tip of the primitive streak including Hensen's node was removed and replaced with non-node cells from quail epiblast to ensure that the cells normally fated to be notochord would be absent and that healing of the blastoderm would occur. Embryos were allowed to develop for 24 hr, and the presence and origin (host or graft) of the notochord were assessed using antibodies against notochord or quail cells. Two notochords typically developed; both were almost exclusively of host origin. The primitive streak, and in some cases adjacent tissues, was removed from another group of embryos in an attempt to estimate the mediolateral position and extent of the cells required to form reconstituted notochord. Additional experimental embryos with and without grafts were transected at various rostrocaudal levels in an attempt to estimate the rostrocaudal extent of the cells required to form reconstituted notochord. Finally, various levels of the primitive streak either were placed in a neutral environment (the germ cell crescent) or were grafted in place of the node. Collective results from all experiments indicate that the areas lateral to the rostral portion of the primitive streak, estimated to have a rostrocaudal span of less than 500 μm and a mediolateral extent of less than 250 μm, are critical for formation of the reconstituted notochord. Fate mapping and histological examination of this region identify 4 possible precursor cell populations. Further studies are underway to determine which of the 4 possible precursor cell types forms or induces the reconstituted notochord, and which tissue interactions underlie this change in cell fate. © 1995 Wiley-Liss, Inc.  相似文献   

16.
In order to characterize human notochordal tissue we investigated notochords from 32 human embryos and fetuses ranging between the 5th and 13th gestational week, using immunohistochemistry to detect intermediate filament proteins cytokeratin, vimentin and desmin, the cytokeratin subtypes 7, 8, 18, 19 and 20, epithelial membrane antigen (EMA), and adhesion molecules pan-cadherin and E-cadherin. Strong immunoreactions could be demonstrated for pan-cytokeratin, but not for desmin or EMA. Staining for pan-cadherin and weak staining for E-cadherin was found on cell membranes of notochordal cells. Also it was demonstrated that notochordal cells of all developmental stages contain the cytokeratins 8, 18 and19, but not 7 or 20. Some cells in the embryonic notochord also contained some vimentin. Vimentin reactivity increased between the 8th and 13th gestational week parallel to morphological changes leading from an epithelial phenotype to the chorda reticulum which represents a mesenchymal tissue within the intervertebral disc anlagen. This coexpression reflects the epithelial-mesenchymal transformation of the notochord, which also loses E-cadherin expression during later stages. Our findings cannot elucidate a histogenetic germ layer origin of the human notochord but demonstrate its epithelial character. Thus, morphogenetic inductive processes between the human notochord and its surrounding vertebral column anlagen can be classified as epithelial-mesenchymal interactions.  相似文献   

17.
Summary The distribution of sclerotome and neural crest cells of avian embryos was studied by light and electron microscopy. Sclerotome cells radiated from the somites towards the notochord, to occupy the perichordal space. Neural crest cells, at least initially, also entered cell-free spaces. At the cranial somitic levels they moved chiefly dorsal to the somites, favouring the rostral part of each somite. These cells did not approach the perichordal space. More caudally (i.e. trunk levels), neural crest cells initially moved ventrally between the somites and neural tube. Adjacent to the caudal half of each somite, these cells penetrated no further than the myosclerotomal border, but opposite the rostral somite half, they were found next to the sclerotome almost as far ventrally as the notochord. However, they did not appear to enter the perichordal space, in contrast to sclerotome cells.When tested in vitro, sclerotome cells migrated towards notochords co-cultured on fibronectin-rich extracellular material, and on collagen gels. In contrast, neural crest cells avoided co-cultured notochords. This avoidance was abolished by inclusion of testicular hyaluronidase and chondroitinase ABC in the culture medium, but not by hyaluronidase from Streptomyces hyalurolyticus. The results suggest that sclerotome and neural crest mesenchyme cells have a different distribution with respect to the notochord, and that differential responses to notochordal extracellular material, possibly chondroitin sulphate proteoglycan, may be responsible for this.  相似文献   

18.
The role of somites and notochords in neuroectoderm differentiation from the embryonic ectoderm and its subsequent patterning into regional compartments along rostro-caudal and dorso-ventral axes, especially in humans, remains elusive. Here, we demonstrate the co-culture effect of somites and notochords isolated from chicken embryos on the neuronal differentiation and regional identity of an adherent culture of human embryonic stem cells (hESCs). Notochord increased the efficiency and speed of neuronal induction, whereas somites had a weak neuronal inducing effect on hESCs. However, a synergistic effect was not observed when notochords and somites were used together. Moreover, in somite and notochord co-culture groups, hESCs-derived neuronal cells expressed HOXB4, OTX2, IRX3 and PAX6, indicative of dorsal hindbrain and ventral anterior identities, respectively. Our results reveal the influence of embryonic notochord and somite co-culture in providing neuronal induction as well as rostro-caudal and dorso-ventral regional identity of hESCs-derived neuronal cells. This study provides a model through which in vivo neuronal induction events may be imitated.  相似文献   

19.
Xenopus mesoderm cells destined to form notochord have been isolated at various stages of gastrulation and cultured singly or in multicellular reaggregates in ectodermal sandwiches. When taken from mid gastrulae, singly implanted notochord progenitor cells can subsequently express the notochord marker MZ15. In contrast, the same cells taken from an early gastrula only do so when implanted as groups of such cells. We conclude that the community effect, first described for muscle differentiation, also applies to the notochord, and that the time in development when the notochord community effect is required precedes that for muscle. Correspondence to: J.B. Gurdon  相似文献   

20.
The central parts of the chick notochord at Hamburger and Hamilton's stages 20–22 were investigated by electron microscopy. Electron-dense bodies of various sizes and shapes and bounded by a limiting membrane were found in the central cells of the notochord. These dense bodies contained fibrous material or microfibrils which ranged from 120 to 600 Å in diameter. The large microfibrils often exhibited a typical repeating period with an interval of about 320 Å. These dense bodies were always located near the cell membrane, which is rough or irregular in the central parts of the notochord at these stages. The fibrous core material of the dense body frequently shows striking similarities to amorphous fibrous material in the intercellular space of the central parts of the notochord, where they are situated at a considerable distance from the perinotochordal sheath space. From these results, it seems reasonable to suggest that the central cells as well as the peripheral cells of the notochord are capable of forming microfibrils similar to those observed in the perinotochordal sheath space.Moreover, they may play an important role in the total fibrillogenesis of the notochord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号