首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

2.
Phosphoenolpyruvate (PEP) carboxykinase was purified 42-fold with a 25% yield from cell extracts of Ruminococcus flavefaciens by ammonium sulfate precipitation, preparative isoelectric focusing, and removal of carrier ampholytes by chromatography. The enzyme had a subunit molecular mass of ∼66.3 kDa (determined by mass spectrometry), but was retained by a filter having a 100-kDa nominal molecular mass cutoff. Optimal activity required activation of the enzyme by Mn2+ and stabilization of the nucleotide substrate by Mg2+. GDP was a more effective phosphoryl acceptor than ADP, while IDP was not utilized. Under optimal conditions the measured activity in the direction of PEP carboxylation was 17.2 μmol min–1 (mg enzyme)–1. The apparent K m values for PEP (0.3 mM) and GDP (2.0 mM) were 9- and 14-fold lower than the apparent K m values for the substrates of the back reaction (oxaloacetate and GTP, respectively). The data are consistent with the involvement of PEP carboxykinase as the primary carboxylation enzyme in the fermentation of cellulose to succinate by this bacterium. Received: 20 August 1996 / Accepted: 28 December 1996  相似文献   

3.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

4.
Phosphoenolpyruvate carboxykinase (PEPCK) from M. expansa has been partially purified and its behaviour in a range of different assay conditions has been determined. Different PEPCK's were found in the cytosol and mitochondria. Some kinetic parameters for each are presented. Both enzymes are activated by Mn2+; cytosolic PEPCK is also activated by Mg2+. The enzymes have pH optima in the range 6·4–7·0. They do not differ with respect to their apparent affinities for inosine and guanosine diphosphates, but the latter allows higher maximal activity. Little activity is observed with adenosine diphosphate. Adenosine and inosine triphosphates exert weak inhibitory effects on the Mn2+ activated enzymes; a much strongsr inhibition is exerted on the cytosolic enzyme when activated by Mg2+. A number of non-nucleotide compounds were tested for possible inhibitory effects with no success. The forward and back reactions catalyzed by PEPCK proceed at similar rates, suggesting that the enzyme may be readily raversible in vivo.  相似文献   

5.
The kinetic affinity for CO2 of phosphoenolpyruvate PEP5 carboxykinase from Anaerobiospirillum succiniciproducens, an obligate anaerobe which PEP carboxykinase catalyzes the carboxylation of PEP in one of the final steps of succinate production from glucose, is compared with that of the PEP carboxykinase from Saccharomyces cerevisiae, which catalyzes the decarboxylation of oxaloacetate in one of the first steps in the biosynthesis of glucose. For the A. succiniciproducens enzyme, at physiological concentrations of Mn2+ and Mg2+, the affinity for CO2 increases as the ATP/ADP ratio is increased in the assay medium, while the opposite effect is seen for the S. cerevisiae enzyme. The results show that a high ATP/ADP ratio favors CO2 fixation by the PEP carboxykinase from A. succiniciproducens but not for the S. cerevisiae enzyme. These findings are in agreement with the proposed physiological roles of S. cerevisiae and A. succiniciproducens PEP carboxykinases, and expand recent observations performed with the enzyme isolated from Panicum maximum (Chen et al. (2002) Plant Physiology 128: 160–164).  相似文献   

6.
Phosphoenolpyruvate carboxykinase (PEPCK) from Ascophyllum nodosum (L.) Le Jolis was partially purified and characterized to investigate its role in inorganic carbon assimilation in macroalgae. Inorganic carbon isotopic disequilibrium studies showed that the carboxylation of phosphoenolpyruvate utilized CO2 rather than HCO3?as its source of inorganic carbon. This is consistent with the enzyme being a phosphoenolpyruvate carboxykinase rather than a phosphoenolpyruvate carboxylase. Pre-incubation with Mn2+alone activated PEPCK more effectively than when combinations of Mn2+, ADP and HCO3?were used as activators. Activation of PEPCK during catalysis was found not to occur. Although the activation of PEPCK reduced the Km for CO2 by a factor of 2.25, the value reported here of 1.084 mM CO2 for the activated enzyme at pH 7.0 is at the top of the range of previously reported values for brown algal PEPCK. The specific activity of PEPCK was increased from 0.268 μmol·min?1·mg?1in the crude extract to 33.03 μmol·min?1·mg?1in the partially purified preparations. Whether PEPCK can act as an initial carboxylating enzyme is discussed. Triton X-100 at 0.57% (v/v) was found to be the optimum detergent and concentration for the extraction of enzymes from A. nodosum. When high concentrations of detergents -were used, a low (NH4)2SO4 cut was required to remove the free detergent from solution, which was extracted by centrifugation. Q Sepharose was used to partially purify PEPCK and separate it from pyruvate kinase. Good protein separations were consistently obtained.  相似文献   

7.
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 μM, respectively, while those for oxaloacetate and GTP were 4 and 23 μM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (> 100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.  相似文献   

8.
The vast majority of serine/threonine protein kinases have a strong preference for ATP over GTP as a phosphate donor. CK2 (Casein kinase 2) is an exception to this rule and in this study we investigate whether calcium/calmodulin-dependent protein kinase II (CaMKII) has the same extended nucleotide range. Using the Drosophila enzyme, we have shown that CaMKII uses Mg2+GTP with a higher Km and Vmax compared to Mg2+ATP. Substitution of Mn2+ for Mg2+ resulted in a much lower Km for GTP, while nearly abolishing the ability of CaMKII to use ATP. These similar results were obtained with rat αCaMKII, showing the ability to use GTP to be a general property of CaMKII. The Vmax difference between Mg2+ATP and Mg2+GTP was found to be due to the fact that ADP is a potent inhibitor of phosphorylation, while GDP has modest effects. There were no differences found between sites autophosphorylated by ATP and GTP, either by partial proteolysis or mass spectrometry. Phosphorylation of fly head extract revealed that similar proteins are substrates for CaMKII whether using Mg2+ATP or Mg2+GTP. This new information confirms that CaMKII can use both ATP and GTP, and opens new avenues for the study of regulation of this kinase.  相似文献   

9.
BackgroundPhosphoenolpyruvate carboxykinase (PEPCK) is a metabolic enzyme in the gluconeogenesis pathway, where it catalyzes the reversible conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and CO2. The substrates for Escherichia coli PEPCK are OAA and MgATP, with Mn2+ acting as a cofactor. Analysis of PEPCK structures have revealed amino acid residues involved in substrate/cofactor coordination during catalysis.MethodsKey residues involved in coordinating the different substrates and cofactor bound to E. coli PEPCK were mutated. Purified mutant enzymes were used for kinetic assays. The structure of some mutant enzymes were determined using X-ray crystallography.ResultsMutation of residues D269 and H232, which comprise part of the coordination sphere of Mn2+, reduced kcat by 14-fold, and significantly increased the Km values for Mn2+ and OAA. Mutation of K254 a key residue in the P-loop motif that interacts with MgATP, significantly elevated the Km value for MgATP and reduced kcat. R65 and R333 are key residues that interacts with OAA. The R65Q and R333Q mutations significantly increased the Km value for OAA and reduced kcat respectively.ConclusionsOur results show that mutation of residues involved in coordinating OAA, MgATP and Mn2+ significantly reduce PEPCK activity. K254 plays an important role in phosphoryl transfer, while R333 is involved in both OAA decarboxylation and phosphoryl transfer by E. coli PEPCK.General significanceIn higher organisms including humans, PEPCK helps to regulate blood glucose levels, hence PEPCK is a potential drug target for patients with non-insulin dependent diabetes mellitus.  相似文献   

10.
A comparison was made between the activation of membrane-bound adenylate cyclase from rat fat cell membranes and the enzyme solubilized with digitonin. The isoprenaline stimulation of the particulate enzyme was enhanced by GTP, both in the presence of Mg2+ and Mn2+, but no effect of the metal ion nor of GTP was found on the Ka of isoprenaline. The Ka of sodium fluoride for enzyme stimulation was shifted to 3-fold higher concentrations when Mg2+ was replaced by Mn2+, whereas V decreased. GTP did not influence the Ka of sodium fluoride but reduced V, irrespective of the metal ion. After digitonin solubilization the enzyme was no longer responsive to isoprenaline or GTP; however, V of the sodium fluoride activation was higher in the presence of Mn2+ than in the presence of Mg2+, and the Ka was found at 15-fold higher concentrations. Both the solubilized and the particulate adenylate cyclase were inhibited by adenosine; this inhibition was also seen with the fluoride stimulated enzyme. We conclude that solubilization with digitonin did not result in an enzyme preparation which preferentially turns over MnATP2+, although the fat cell adenylate cyclase possesses a metal ion regulatory site with a higher affinity for Mn2+ than for Mg2+. The data suggest that the guanyl nucleotide regulatory site and the sodium fluoride-sensitive site are located on different subunits while there is an interaction between the metal ion regulatory site and the fluoride-sensitive site.  相似文献   

11.
Nematodes which have adapted to an anaerobic lifestyle in their adult stages oxidise phosphoenolpyruvate (PEP) to oxaloacetate rather than pyruvate as the final product of glycolysis. This adaptation involves selective expression of the enzyme phosphoenolpyruvate carboxykinase (PEPCK), instead of pyruvate kinase (PK). However, such adaptation is not absolute in aerobic nematode species. We have examined the activity and kinetics of PEPCK and PK in larvae (L3) and adults of Teladorsagia circumcincta, a parasite known to exhibit oxygen uptake. Results revealed that PK and PEPCK activity existed in both L3s and adults. The enzymes had differing affinity for nucleotide diphosphates: while both can utilise GDP, only PK utilised ADP and only PEPCK utilised IDP. In both life cycle stages, enzymes showed similar affinity for PEP. PK activity was predominant in both stages, although activity of this enzyme was lower in adults. When combined, both the activity levels and the enzyme kinetics showed that pyruvate production is probably favoured in both L3 and adult stages of T. circumcincta and suggest that metabolism of PEP to oxaloacetate is a minor metabolic pathway in this species.  相似文献   

12.
Zusammenfassung Zellfreie Extrakte aus Agaricus bisporus bilden Malat, Fumarat und Aspartat einerseits aus Pyruvat und CO2 in Gegenwart von Mn2+ und andererseits aus Phosphoenolpyruvat und CO2 in Gegenwart von Mg2+.Die Carboxylierung von Pyruvat wird durch ATP und NADPH2 deutlich gefördert, ist aber unabhängig von der Anwesenheit von CoA-Estern. Die Reaktion erfährt durch pCMB, Oxalat und Avidin eine Hemmung.Die Carboxylierung von Phosphoenolpyruvat wird durch ADP, nicht aber durch GDP und IDP gefördert.Aus den Ergebnissen wird geschlossen, daß bei der Carboxylierung von Pyruvat sowohl Pyruvatcarboxylase als auch Malatenzym wirksam sind, während für die Oxalacetatsynthese aus Phosphoenolpyruvat PEP-Carboxykinase verantwortlich ist.Die Bedeutung der drei Enzyme im Zusammenhang mit der Ernährung des Kulturchampignons aus dem natürlichen Substrat, mit der Glucogenese und der Steuerung des Citronensäurecyclus wird diskutiert.
Carboxylation reactions in Agaricus bisporus III. Pyruvate and phosphoenolpyruvate as CO2-acceptors
Summary Cell-free extracts from Agaricus bisporus catalyze the synthesis of malate, fumarate and aspartate from pyruvate and CO2 in the presence of Mn2+, and from phosphoenolpyruvate and CO2 with Mg2+ (partially replaceable by Mn2+).The carboxylation of pyruvate is highly stimulated by ATP and NADPH2, but is not affected by CoA-esters. The reaction is inhibited by pCMB, oxalate and avidin.The carboxylation of phosphoenolpyruvate is stimulated by ADP, but not by IDP and GDP.From cofactor-requirement and inhibitor studies it is concluded, that there are two enzymes, pyruvatecarboxylase and malic enzyme, which catalyze the carboxylation of pyruvate. Phosphoenolpyruvate carboxykinase is responsible for the CO2-fixation into oxaloacetate.The significance of these three enzymes is discussed in connection with the nutrition of the fungus from its natural growth substrate and with the regulation of glycogenesis and the citric acid cycle.
  相似文献   

13.
The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.  相似文献   

14.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn2+ as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990–994] shows that Lys213 is one of the ligands to Mn2+ at the enzyme active site. Coordination of Mn2+ to a lysyl residue is not common and suggests a low pK a value for the ε-NH2 group of Lys213. In this work, we evaluate the role of neighboring Phe216 in contributing to provide a low polarity microenvironment suitable to keep the ε-NH2 of Lys213 in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn2+, suggesting an increase of the pK a of Lys213. In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK a of the ε-amino group of Lys213 upon Phe216Tyr mutation.  相似文献   

15.
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cdu2+ > Ni2+ ⪢ Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of varying the type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn2+ activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co2+-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5′-dithiobis(2-nitro-benzoate) (DTNB) lead to an almost complete inhibition of Mn2+-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3 had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co2+-activated enzyme than for its Mn2+-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.  相似文献   

16.
PEP-dependent4 CO2-fixation by extracts of Ascophyllum nodosum (L.) Le Jol. is reported. The carboxylation of PEP is Mn2+ dependent and ATP is shown to be a product. IDP was found to be less efficient as a phosphate acceptor than ADP and 3-mercaptopicolinic acid inhibited the carboxylation reaction. Extracts decarboxylated OAA only in the presence of ATP and had high activities of MDH and GOT. This evidence, together with the probable absence of PEPC, PEPCTrP, and PC in A. nodosum extracts, favors the view that PEPCK is responsible for the light-independent CO2-fixation observed in this alga.  相似文献   

17.
Brush border membrane vesicles (BBMV) from the midgut epithelial cells of silkworm larvae were prepared. ATP hydrolyzing activity (ATPase activity) was associated with the BBMV. ATPase activity without Mg2 + was not observed at pH 7 but substantial ATP hydrolyzing activity was observed at pH 7 with Mg2 +. The enzyme required Mn2 +, Mg2 +, or Ca2+ ions. The enzyme also hydrolyzed ITP and GTP but not p-NPP, ADP, or AMP. KNO3 and NEM strongly inhibited the ATPase activity. Behaviours of the ATPase against inhibitors suggested that it resembled vacuolar type ATPase.  相似文献   

18.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containg forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 μM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 μM and 85–120 μM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 μM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO nitroso compounds.  相似文献   

19.
A deoxyribonuclease, isolated from the mycelia of Aspergillus niger, grown as surface cultures on a liquid medium, was partially purified and had an optimum pH of 9.5 and an optimum temperature of 37°C. The enzyme was strongly activated by Mg2+ while Mn2+, Ca2+ or Co2+ activated the enzyme to lesser extents. Thiol reagents, mercaptoethanol and dithiothreitol (DTT) activated the enzyme. S-Adenosylmethionine at low concentration (2.8?5.0 × 10?2 mM) activated the enzyme but at a higher concentration (11.5 × 10?2 mM) and above it inhibited the enzyme. The effect of EDTA on the enzyme was variable. The enzyme had both ATP-dependent and independent activities, the former usually being higher. ATP could be replaced by CTP or GTP. The nucleoside diphosphates ADP, CDP and GDP could replace ATP but they were not as effective as the triphosphates.  相似文献   

20.
A phosphoenolpyruvate (PEP) phosphatase was purified to homogeneity from germinating mung beans (Vigna radiata). It was found to be a tetrameric protein (molecular mass 240,000 daltons) made up of apparently identical subunits (subunit molecular mass 60,000 daltons). It was free from bound nucleotides. It did not show pyruvate kinase activity. The enzyme showed high specificity for PEP. Pyrophosphate and some esters (nucleoside di- and triphosphates) were hydrolyzed slowly and phosphoric acid monoesters were not hydrolyzed. The enzyme showed maximum activity at pH 8.5. At this pH, the Km of PEP was 0.14 millimolar and the Vmax was equal to 1.05 micromoles pyruvate formed per minute per milligram enzyme protein. Dialysis of the enzyme against 10 millimolar triethanolamine buffer (pH 6.5), led to loss of the catalytic activity, which was restored on addition of Mg2+ ions (Km = 0.12 millimolar). Other divalent metal ions inhibited the Mg2+ -activated enzyme. PEP-phosphatase was inhibited by ATP and several other metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号