首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zonal ultracentrifuge has been used to separate the major components of rat liver brei (soluble phase, ribosomes, microsomes, mitochondria, membranous fragments, and nuclei) during one centrifugation, by using a 1200 ml sucrose gradient varying linearly with radius from 17 to 55 per cent (w/w) with a "cushion" of 66 per cent sucrose at the rotor edge at speeds up to 30,000 RPM. Liver brei was found to contain a family of phosphatases (phenol disodium phosphate substrate, sodium malonate buffers and Turgitol NPX, a non-ionic detergent). Activity maxima at pH 4.1 and 5.9 were observed in untreated brei prepared in 0.25 M sucrose. The addition of the non-ionic detergent Turgitol NPX selectively caused the release of considerable additional activity between these optima. The activity measured at pH 4.1 was primarily associated with the cytoplasmic granules, while the activities at pH 4.8, 5.4 and 5.9 were found in both soluble phase and particulate-mitochondria and membranous fractions. The activities present beyond the region of the gradient occupied by the soluble phase (sample layer) were all bound to particles sedimentable at 105,536 g (average) in the preparative ultracentrifuge. The data suggest that the different activities are not similarly distributed between soluble phase and particulate fractions. When the data are expressed in terms of specific activity, the area in the gradient between the microsomes and mitochondria now appears richest in all the acid phenyl phosphatase activities measured, while the soluble phase and larger particulate fractions appear relatively poor in activity. This part of the gradient is occupied by small, dense granules which may be the so called lysosomes. Pretreatment of the brei with Turgitol NPX prior to fractionation in the zonal ultracentrifuge resulted in the solubilization of acid phenyl phosphatase activities (almost all the activity was in the sample zone of the gradient) and the non-specific destruction of the formed elements of the brei. Essentially all of the activities present in the original brei measured under these conditions were recovered after zonal ultracentrifuge fractionations.  相似文献   

2.
Goosefish islets were homogenized in 0.25 M sucrose and separated into nuclear, mitochondrial + secretion granule, microsomal, and supernatant fractions. Eighty per cent of the cytochrome oxidase activity and 75 per cent of the bioassayed insulin activity were found in the mitochondrial + secretion granule fraction (6000 g for 10 minutes). The mitochondrial + secretion granule fraction was further subfractionated by centrifugation (2 hours at 100,000 g and 0°C) using a continuous linear density gradient 1.0–2.0 M sucrose). Eighteen to 20 subfractions were collected by piercing the bottom of the tube and collecting drops. The total protein was distributed into a bimodal curve consisting of a high density component, which contained 90 per cent of the insulin (secretion granules), and a lower density component, which contained the cytochrome oxidase activity (mitochondria).  相似文献   

3.
Supernatants of rat skeletal muscle homogenates were fractionated by differential centrifugation and by zonal centrifugation in sucrose density gradients. Cytochrome oxidase was employed as an enzymatic marker for locating mitochondria. The subcellular fractions were also assayed for their ability to prevent the ATP-induced contraction of myofibrils. Both the mitochondrial and microsomal fractions obtained by differential fractionation were found to be rich in such relaxing activity, and the microsomal fraction was appreciably contaminated by mitochondria. In contrast to this, when fractionation was carried out by means of zonal centrifugation (4200 RPM x 205 min. to 40,000 RPM x 60 min.), relaxing activity was found to be associated only with particles having the sedimentation characteristics of microsomes (s 20,w estimated to be between 370 and 1880S). Relaxing activity was not detected in the regions of the gradient containing either the starting sample zone (soluble phase) or the mitochondrial peak. The microsomal relaxing particles showed negligible cytochrome oxidase activity.  相似文献   

4.
Subcellular fractions of the electric tissue of the main organ of the eel Electrophorus electricus were prepared in sucrose media by differential centrifugation and differential discontinuous gradient centrifugation. The distributions of acetylcholinesterase, cytochrome oxidase, DNA, and protein were determined. The appearance of the fractions was determined by phase contrast microscopy and by electron microscopy. A fraction prepared by differectial centrifugation at 30,000 g for 20 minutes in 0.89 M sucrose contained 63 per cent of the total acetylcholinesterase activity at 4 times the specific activity of that of the tissue homogenate. A subfraction prepared by centrifugation in a discontinuous density gradient showed a peak of total and relative specific acetylcholinesterase activity of 35 per cent and 1.9, respectively. The average over-all purification was 7 times. The acetylcholinesterase peak was below the cytochrome oxidase peak and above the DNA peak in the density gradient. The presence of acetylcholinesterase in the fractions was correlated with the presence of large fragments of the cell membrane; however, the presence of other tissue components was noted. The acetylcholinesterase associated with membrane was found to be activated by incubation with sodium deoxycholate. The possible use of the peak fraction containing membranes rich in acetylcholinesterase for the investigation of other components of the acetylcholine system and of other properties of the membrane is discussed.  相似文献   

5.
1. Methods of disrupting Krebs II mouse ascites-tumour cells have been studied. After washing the cells free of ions with sucrose solutions, rapid disruption was obtained in sucrose by use of an Ultra-Turrax disintegrator or a Dounce homogenizer. 2. Disruption of cells after osmotic shock led to the loss of proteins, especially cytochrome c, from the mitochondria. Such losses did not occur when cells were disrupted by shear in 0·3 m-sucrose. 3. The distribution of protein, RNA, DNA, malate dehydrogenase, cytochrome c, cytochrome oxidase and succin-oxidase was measured in the various cell fractions after separation by differential centrifuging. 4. The mitochondrial fraction sedimented at 9500g was further fractionated by equilibrium sedimentation in a sucrose gradient. The distribution of protein and enzyme activity in the gradient indicated that the 9500g pellet contains other material besides mitochondria. 5. Krebs-cell mitochondria contain up to five times as much RNA as do liver mitochondria. 6. After purification by equilibrium centrifugation Krebs-cell mitochondria still contain traces of DNA.  相似文献   

6.
Nawa Y  Asahi T 《Plant physiology》1973,51(5):833-838
l-Leucine-U-14C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be achieved by a transfer of protein pre-existing in the cytoplasm into the mitochondria rather than by de novo synthesis of mitochondrial protein. Cycloheximide stimulated an increase in bile saltsoluble protein of mitochondria in imbibing pea cotyledons. The recovery of cytochrome oxidase activity after sucrose density gradient centrifugation was enhanced, and the morphological properties of mitochondria were altered by cycloheximide.  相似文献   

7.
The present study was undertaken to separate peroxisomes of the dog kidney cortex by the methods of discontinuous sucrose density gradient and zonal centrifugation. The separation of subcellular particles was evaluated by measuring the activities of reference enzymes, beta-glycerophosphatase for lysosomes, succinate dehydrogenase for mitochondria, glucose-6-phosphatase for microsomes, and catalase and D-amino acid oxidase for peroxisomes. The activities of D-amino acid oxidase and catalase were mainly observed in fractions 1 and 2 (1.6 and 1.7 M sucrose) obtained by discontinuous sucrose density-gradient centrifugation. Small amounts of acid phosphatase and succinate dehydrogenase contaminated these fractions. Considerably higher activity of catalase was determined in the supernatant, while D-amino acid oxidase showed a lower activity. By the method of zonal centrifugation, the highest specific activities of catalase and D-amino acid oxidase were found in fraction 50 (1.73 M sucrose) with no succinate dehydrogenase, acid phosphatase or glucose-6-phosphatase activity. These results suggested that peroxisomes of dog kidney cortex were clearly separated in 1.73 M sucrose from mitochondria, lysosomes and microsomes by zonal centrifugation.  相似文献   

8.
A method is described for the preparation of spheroplasts in high yield from Schizosaccharomyces pombe, by treating cells grown in the presence of glucose and deoxyglucose with snail digestive enzymes. Gentle disruption of such spheroplasts yielded homogenates, from which marker enzymes for nuclei (NAD pyrophosphorylase) and mitochondria (cytochrome c oxidase activity and spectroscopically-detectable cytochromes a + a3) could be quantitatively sedimented by low-speed centrifugation. In contrast to previous findings with Saccharomyces carlsbergensis, cytochrome c oxidase and another mitochondrial enzyme, succinate dehydrogenase, were completely sedimentable by zonal centrifugation in sucrose gradients in the presence of either 2 mM-MgCl2 or 0-4 mM-EDTA. Mitochondria were apparently smaller and of lower buoyant density in gradients containing EDTA. The bulk of the total units of malate dehydrogenase and NADH; cytochrome c oxidoreductase sedimented with mitochondria, whereas NADPH: cytochrome c oxidoreductase was located in fractions containing no mitochondria. The distributions of mitochondrial enzymes were heterogeneous in populations of mitochondria separated on the basis of size or density. The possible origins of mitochondrial heterogeneity in extracts of S. pombe are discussed with special reference to changes in the enzyme activities of cells during the cell cycle.  相似文献   

9.
Highly purified mitochondria from rat liver were separated into six sub-fractions by differential centrifugation. The sub-fractions represent a spectrum from “heavy” to “very light” mitochondria. Enzymes representative of mitochondrial compartments were assayed to see whether functional differences occurred among the various mitochondrial sub-fractions. Respiratory control and NADH oxidase activity, both of which are indicators of mitochondrial structural integrity, were also measured. An enzyme marker for endoplasmic reticulum (glucose-6-phosphatase, G-6-Pase) was also assayed. Specific activities for monoamine oxidase (outer membrane marker), cytochrome oxidase (inner membrane marker) and malate-cytochrome c reductase did not vary within experimental error in all sub-fractions; similarly, for respiratory control and NADH oxidase activity. Malate dehydrogenase, a component of malate-cytochrome c reductase is located within the matrix surrounded by the inner membrane. Specific activity of adenylate kinase (located between the outer and inner membrane) decreased markedly from the “heavy” mitochondria to the “very light” fractions. Specific activity for G-6-Pase, very low in the “heavy” fractions, increased markedly in the “light” to “very light” fractions. Isopycnic density centrifugation on a linear sucrose density gradient of each of the fractions indicated that the correlation coefficient for the sucrose concentrations at which cytochrome oxidase and G-6-Pase activities peaked was 0.995. Thus the “light” to “very light” mitochondria may represent mitochondria whose outer membrane is still contiguous with the endoplasmic reticulum. Microsomes containing the endoplasmic reticulum peaked on the gradient at a significantly lower sucrose concentration than any of the mitochondrial sub-fractions. A buoyant effect of endoplasmic reticulum still attached to any of the mitochondrial sub-fractions would be expected to lower the density of attached mitochondria and thus give rise to “light” and “very light” mitochondria.  相似文献   

10.
A series of "winter" and "summer" Lucké kidney tumors of the frog (Rana pipiens) were homogenized and fractionated by differential centrifugation into nuclear, mitochondrial, and mitochondrial supernatant fractions. Winter tumors often contained high concentrations of herpesvirus, whereas no virus was observed in any of the summer tumors. The crude tumor fractions were further purified by rate-zonal sucrose gradient centrifugation in a B-XV zonal rotor. Gradient fractions rich in an enveloped, nucleated form of the herpesvirus from certain winter tumors have induced renal tumors when injected into developing frog embryos. Zonal centrifugation was followed by isopycnic banding of the virus zones for further purification of the different morphological forms of the virus.  相似文献   

11.
A method was developed using zonal centrifugation to recover liver mitochondria quantiatively and free of other cellular components from a sample of whole homogenate. The fractions containing mitochondria were identified by the distribution of cytochrome oxidase and these fractions contained over 90% of the total cytochrome oxidase recovered. The mitochondrial fractions were found to be only slightly contaminated by 5′-nucleotidase (plasma membranes), acid phosphatase (lysosomes), glucose-6-phosphatase (microsomes), and catalase (peroxisomes). There was no detectable contamination by nuclear DNA (nuclei). This method was used to quantitate total liver mitochondrial protein. The development of this procedure provides a means for following total changes in mitochondrial components during mitochondrial biogenesis.  相似文献   

12.
Summary Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membrane enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

13.
1. Mitochondria isolated from rat liver were disrupted with 0.3 per cent deoxycholate and a number of subfractions were isolated from this preparation by differential centrifugation. 2. The protein N, RNA and phospholipide content, as well as the succinoxidase, cytochrome c oxidase, adenylate kinase, and DPNH-cytochrome c reductase of these fractions were determined. 3. Two of these subfractions, found to consist of mitochondrial membranes (2), contained ~ 12 per cent of the protein N and ~ 35 per cent of the phospholipide of the whole mitochondria and accounted for ~ 70 per cent of the succinoxidase and cytochrome c oxidase activity of the original mitochondrial preparation. There was no discernible adenylate kinase, DPNH-cytochrome c reductase, or phosphorylating activities in these fractions, nor could they oxidize other substrates of the Krebs's cycle. 4. The most active fraction (60 minutes at 105,000 g pellet) had a higher phospholipide/protein value than the whole mitochondria and showed a seven-to elevenfold concentration of succinoxidase and cytochrome c oxidase activities. 5. Evidence has been given to indicate that the various components of the succinoxidase complex are present in this membrane fraction in the same relative proportions as in the whole mitochondria. 6. The implications of these findings are discussed.  相似文献   

14.
1. Mitochondria isolated from rat liver were disrupted with 0.3 per cent deoxycholate and a number of subfractions were isolated from this preparation by differential centrifugation. 2. The protein N, RNA and phospholipide content, as well as the succinoxidase, cytochrome c oxidase, adenylate kinase, and DPNH-cytochrome c reductase of these fractions were determined. 3. Two of these subfractions, found to consist of mitochondrial membranes (2), contained approximately 12 per cent of the protein N and approximately 35 per cent of the phospholipide of the whole mitochondria and accounted for approximately 70 per cent of the succinoxidase and cytochrome c oxidase activity of the original mitochondrial preparation. There was no discernible adenylate kinase, DPNH-cytochrome c reductase, or phosphorylating activities in these fractions, nor could they oxidize other substrates of the Krebs's cycle. 4. The most active fraction (60 minutes at 105,000 g pellet) had a higher phospholipide/protein value than the whole mitochondria and showed a seven-to elevenfold concentration of succinoxidase and cytochrome c oxidase activities. 5. Evidence has been given to indicate that the various components of the succinoxidase complex are present in this membrane fraction in the same relative proportions as in the whole mitochondria. 6. The implications of these findings are discussed.  相似文献   

15.
Mitochondria isolated from rat liver and suspended in 0.44 M sucrose were disrupted by treatment with 0.3 per cent Na deoxycholate. The treated suspension was fractionated by differential centrifugation into a number of fractions and the respective pellets were examined in sections in the electron microscope. One of these fractions was found to consist of apparently membrane-bound (vesicular) elements. The difference between interfaces and membranes was discussed and the material of this fraction was found to meet stated requirements identifying it as membranous. A detailed study of the disruption process undergone by mitochondria in the presence of Na deoxycholate showed that the elements of this fraction were derived from structural elements assumed to be mitochondrial membranes. The findings thus demonstrate that mitochondria do possess membranes as defined and that these membranes can be isolated in a relatively pure form.  相似文献   

16.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

17.
A mitochondrial fraction prepared from fresh tissue of sweetpotato root was subjected to sucrose density gradient centrifugation.The distribution of cytochrome oxidase activity, after the centrifugation,showed the presence of at least three kinds of mitochondrialparticles which differed in their sedimentation velocity. Byrepeating the sucrose density gradient centrifugation, it wasdemonstrated that they are not interconvertible. There seemedto be no difference in the distribution between cytochrome andsuccinate oxidase activities. In the case of malate or succinatedehydrogenase activity, however, the greater the sedimentationvelocity of the particle, the greater was the dehydrogenaseactivity per unit of cytochrome oxidase activity. Some changesin the distribution of cytochrome oxidase activity in responseto aging of the tissue slices were observed. 1This paper constitutes Part 62 of the Phytopathological Chemistryof Sweet Potato with Black Rot.  相似文献   

18.
In rat kidney high-affinity binding sites for [3H]Ro-5-4864 and [3H]PK-11195 with the properties of the peripheral-type acceptor were found enriched in mitochondrial (M) and light-mitochondrial-lysosomal (L) fractions on differential centrifugation. When the combined M and L fractions were subjected to sucrose density gradient centrifugation, these binding sites were found enriched at a density of 1.155 g/ml coincident with a population of light mitochondria, whereas a population of heavier mitochondria (rho = 1.175 g/ml) had few or no binding sites. Transmission electron microscopy showed that whereas the heavier mitochondria appeared highly pure and intact, the lighter mitochondria appeared less intact and to be contaminated with vesicular structures. After fractionation of the light mitochondria and vesicles by centrifugation, both fractions showed the same ratio of [3H]Ro-4864 binding sites to monoamine oxidase activity consistent with the vesicles being of mitochondrial outer-membrane origin. Digitonin pre-treatment had no effect on the density of acceptor-rich fractions on sucrose density gradient centrifugation. However, pretreatment with succinate/iodophenylnitrophenylphenyltetrazolium (INT) perturbed equally the density of acceptor-rich fractions and mitochondrial marker enzymes. When mitochondrial fractions were subjected to sonication prior to density gradient centrifugation the binding sites were now found highly enriched in a much lighter fraction coincident with the monoamine oxidase activity and thus consistent with being outer-membrane vesicles. When a mitochondrial fraction was subjected to hypotonic treatment before assay no evidence for activation/unmasking of binding sites was found. The hypotonic treatment did not release any inhibitor of the binding sites. These results are consistent with the peripheral benzodiazepine acceptor having an outer-membrane location on a sub-population of rat kidney mitochondria. Those mitochondria showing high levels of the acceptor are either light mitochondria or appear more susceptible to osmotic damage than those mitochondria in which the acceptor is absent or at low levels.  相似文献   

19.
Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na+- and K+-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.  相似文献   

20.
Abstract— The distribution of a series of enzymes in the post-nuclear supernatant of rat brain homogenates was investigated following continuous density-gradient centrifugation. The enzymes studied were acetyl coenzyme A synthetase, glutamic dehydrogenase, glutamine synthetase, glutaminase I, succinic dehydrogenase and monoamine oxidase. Each of these enzymes with the exception of glutamine synthetase appears predominantly in the mitochondrial region of the gradient. Although about 20 per cent of this enzyme is present in the crude mitochondrial pellet, on density gradient centrifugation no special association of glutamine synthetase with any of the mitochondrial fractions was observed. Each of the other enzymes studied was found to have a characteristic distribution in the gradient; this suggests that brain mitochondria may be heterogeneous both in buoyant density and in their enzyme content. Three principal fractions are described: (i) dense particles containing high concentrations of acetyl coenzyme A synthetase and glutamic dehydrogenase; (ii) a fraction comprising the bulk of the mitochondria with high levels of monoamine oxidase, succinic dehydrogenase and glutaminase I; and (iii) particles in the synaptic ending region of the gradient characterized by relatively high levels of monoamine oxidase and succinic dehydrogenase and containing only small amounts of the other enzymes studied. If the mitochondrial heterogeneity that is observed on centrifugation reflects the existence within brain cells of mitochondria with specialized function, a partial explanation may be available for multiple pools of tricarboxylic acid cycle intermediates which have been postulated from isotopie labelling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号