首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the Sparid fish Pagellus erythrinus L. The spermatozoon of pandora has a spherical head lacking an acrosome, a cone-shaped midpiece and a long tail. The midpiece houses a single mitochondrion. The centriolar complex lies inside the nuclear fossa and is composed of a proximal and a distal centriole which are arranged at right angles to each other. The flagellum is inserted medio-laterally into the head, contains the conventional 9+2 axoneme and possesses one pair of lateral fins. On the basis of its ultrastructural organization, the pandora sperm can be regarded as an evolved form of the primitive spermatozoon found in Teleosts. According to the morphological classification proposed by Mattei (1970), the sperm of pandora belongs to a "type I" designation, like that of the other Sparid fish.  相似文献   

3.
As part of a larger study on sperm quality and cryopreservation methods, the present study characterized the head morphometry of sharpsnout sea bream (Diplodus puntazzo) and gilthead sea bream (Sparus aurata) spermatozoa, using both scanning electron microscopy (SEM) and computer‐assisted morphology analysis (ASMA). The latter method has been used rarely in fish and this is its first application on sharpsnout sea bream and gilthead sea bream spermatozoa. Results obtained using SEM are expensive and time‐consuming, while ASMA provides a faster and automated evaluation of morphometric parameters of spermatozoa head. For sharpsnout sea bream spermatozoa, similar head measurement values were obtained using both ASMA and SEM, having a mean ± standard error length of 2.57 ± 0.01 μm vs 2.54 ± 0.02 μm, width of 2.22 ± 0.02 μm vs 2.26 ± 0.04 μm, surface area of 4.44 ± 0.02 μm2 vs 4.50 ± 0.04 μm2 and perimeter of 7.70 ± 0.02 μm vs 7.73 ± 0.04 μm using ASMA and SEM, respectively. Although gilthead sea bream spermatozoa were found to be smaller than those of sharpsnout sea bream, spermatozoal head morphometry parameters were also found to be similar regardless of evaluation method, having a mean head length of 1.97 ± 0.01 μm vs 1.94 ± 0.02 μm, head width of 1.80 ± 0.01 μm vs 1.78 ± 0.02 μm, surface area of 3.16 ± 0.03 μm2 vs 3.18 ± 0.06 μm2 and perimeter of 6.52 ± 0.04 μm vs 6.56 ± 0.08 μm using ASMA and SEM, respectively. The results demonstrate that ASMA can be considered as a reliable technique for spermatozoal morphology analysis, and can be a useful tool for studies on fish spermatozoa, providing quick and objective results.  相似文献   

4.
The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0–2 m and 10–12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.  相似文献   

5.
6.
During the rearing process of gilthead sea bream (Sparus aurata), abnormal development of the opercular bone is particularly common (Aquaculture 156, 1997, 165). In order to alleviate its occurrence in rearing facilities, it’s crucial to identify the very first physical signs of deviation in normal skeletal development. Nano‐CT‐scanning was tested for its applicability to quantify deviations in bone mineralization levels. Seven opercles were dissected from larvi of 65 days post hatching, randomly sampled at the commercial sea bream hatchery Maricoltura di Rosignano Solvay (Livorno, Italy). The samples were nano‐CT‐scanned and computationally reconstructed. Mineralization intensity was colorcoded using Amira software, resulting in a detailed visualization of opercular morphology and mineralization patterns. In conclusion, nano‐CT‐scanning promises to be a good tool to both describe morphology and detect mineralization levels in the early onset of deformities.  相似文献   

7.
8.
Experiments were carried out to study invitro the effects of 17-estradiol (E2), homologouspituitary homogenate (HPH), and recombinant red sea bream growthhormone (sbGH) on vitellogenin (VTG) secretion from cultured sea breamliver fragments. Basal secretion of VTG was found to be significantlyhigher in the prespawning period, compared with sea bream liver in thespawning and postspawning periods. Similarly, the sea bream liverobtained during the prespawning period responded more significantly totreatments with E2, HPH, or sbGH compared with sea breamliver during spawning. In the postspawning period, treatments withE2, HPH, or sbGH were without significant effect on VTGsecretion level in sea bream liver. The level of E2receptors was also analyzed by Western blot analysis. The resultdemonstrates a significantly higher level of E2 receptors in the sea bream liver at the prespawning stage compared with those atthe spawning and postspawning stages. The findings support thehypothesis that homologous upregulation of estrogen receptors plays animportant role in the estrogen-sensitive control of VTG synthesis inthe sea bream liver.

  相似文献   

9.
  • 1.1. The influx and transepithelial movements of l-methionine and its effects on the electrophysiology and Na-Cl-transport in upper and lower intestine of the cultured fish, Spanis aurata, were measured.
  • 2.2. The Km and Vmax of l-methionine influx into the tissues were higher in lower intestine than in upper intestine. A prominent diffusion-like transport component was also measured in both segments during influx experiments.
  • 3.3. Net transepithelial fluxes of l-methionine (1 mM) were observed in both upper and lower intestine, this transport being Na+-dependent.
  • 4.4. The two intestinal segments exhibited an electrical potential difference (PD) and a short circuit current (Isc) serosa negative or near zero. Tissue conductance (Gt) was higher in posterior than in lower intestine.
  • 5.5. Addition of l-methionine to the mucosal side of lower or upper intestine did not induce changes in PD in either part.
  • 6.6. Isotopic fluxes of Cl or Na+ measurements under short circuit conditions showed that there were no net Cl or Na+ transport in either part.
  • 7.7. l-Methionine additions to the mucosa did not induce changes in unidirectional fluxes of Cl or Na+ or in the (Isc) in either the anterior or posterior intestine.
  相似文献   

10.
11.
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.  相似文献   

12.
13.
14.
Fish pasteurellosis is a bacterial disease causing important losses in farmed fish, including gilthead sea bream, a teleost fish of great relevance in marine aquaculture. We report in this study a QTL analysis for resistance to fish pasteurellosis in this species. An experimental population of 500 offspring originating from eight sires and six dams in a single mass‐spawning event was subjected to a disease challenge with Photobacterium damselae subsp. piscicida (Phdp), the causative agent of fish pasteurellosis. A total of 151 microsatellite loci were genotyped in the experimental population, and half‐sib regression QTL analysis was carried out on two continuous traits, body length at time of death and survival, and for two binary traits, survival at day 7 and survival at day 15, when the highest peaks of mortality were observed. Two significant QTLs were detected for disease resistance. The first one was located on linkage group LG3 affecting late survival (survival at day 15). The second one, for overall survival, was located on LG21, which allowed us to highlight a potential marker (Id13) linked to disease resistance. A significant QTL was also found for body length at death on LG6 explaining 5–8% of the phenotypic variation.  相似文献   

15.
Detailed measurements of gill area and constituent variables (total filament length, lamellar frequency and bilateral area) were performed on both hemibranchs of all eight arches in six specimens of gilthead sea bream Sparus aurata (mean ±s.e . 49·9 ± 0·2 g). Shrinkage was also quantified and results were corrected accordingly. Filament number decreased from the first to the fourth gill arch, and average bilateral area of secondary lamellae was higher in the second and third arches. Total and mean filament length, total number of secondary lamellae and total gill area (ATG) were lower in posterior than in anterior hemibranchs of the second, third and fourth gill arches; while the opposite was observed for the first arch. Lamellar frequency was increased in posterior hemibranchs of all arches compared to that in anterior hemibranchs, especially at the fourth arch. Comparison of the actually measured ATG and constituent variables with estimates revealed that the third gill arch is the most representative for appropriate measurements and that any of its components (even one hemibranch) approximates the best ATG (within the range of 0·2–4·3%, P > 0·05) and related dimensions. Consequently, necessary measurements were restricted to the posterior hemibranch of the third gill arch, and ATG and dimensions (y) were estimated in 21 specimens (23·5–217·6 g) and correlated to body mass (M) according to the allometric equation y = aMb. As fish increased in size, ATG (b= 0·664), total (b= 0·425) and mean (b= 0·323) filament length, total number of filaments (b= 0·103) and secondary lamellae (b= 0·377), as well as average lamellar bilateral area (b= 0·288), increased, while the opposite was observed for lamellar frequency (b=?0·049) and mass‐specific area (b=?0·336). Data obtained are discussed in relation to S. aurata activity and living ethology.  相似文献   

16.
17.
In the current work, we have cloned and sequenced the full cDNA for a Mx protein in the gilthead sea bream (Sparus aurata) by RACE PCR. The Mx cDNA of 2182 bp contained an open reading frame of 1857 bp that codes for a protein of 618 aa. Within the coding sequence, characteristic features of Mx proteins were found, such as a tripartite guanosine-5'-triphosphate (GTP)-binding motif (GXXXSGKS/T, DXXG and T/NKXD), the signature of the dynamin family, LPRG(S/K)GIVTR, and a sequence that codes for a leucine zipper at the C-terminal region of the protein. An RT-PCR was optimised to estimate the level of expression of Mx protein in sea bream. Through this method we determined that Mx is constitutively expressed in head kidney, liver, spleen, heart, gills, muscle and brain of healthy sea bream. Intramuscular challenge of sea bream with polyinosinic:polycytidylic acid (Poly I:C) up-regulated Mx expression in liver, head kidney, spleen and muscle. Constitutive expression was also found in isolated head kidney macrophages and blood leukocytes. This expression was significantly up-regulated by addition of Poly I:C. Mx was not constitutively expressed in the sea bream established cell line, SAF-1, but Poly I:C and nodavirus were also capable of inducing Mx expression in this cell line.  相似文献   

18.
19.
Aquatic organisms may suffer from exposure to high Cu concentrations, since this metal is widely used in feed supplementation, in pesticide formulation and as antifouling. Chronic exposure to Cu, even at sub-lethal doses, may strongly affect fish physiology. To date, several biomarkers have been used to detect Cu exposure in fish producing contrasting results. Therefore, we used a proteomic approach to clarify how Cu exposure may affect the serum proteome of gilthead sea bream (Sparus aurata), since serum could be considered a good source of early-biomarkers of Cu toxicosis. For this purpose we exposed juvenile gilthead sea bream to waterborne Cu (0.5 mg/L). Our results indicate that fish tightly regulate circulating Cu levels, which are not affected by metal exposure. This homeostatic control is mainly achieved by the liver, able to excrete high amounts of the metal via bile. Cu exposure caused differential expression of several serum proteins, 10 of which were identified by Mascot and BLAST search. All these proteins, with the exception of growth hormone receptor and γ-glutamyl-carboxylase, can be related to: 1) Cu-induced hepatotoxicity (cytochrome oxidase subunit I, alanine aminotransferase, glutathione S-transferase); 2) potential immunosuppression due to interference of Cu with the inflammation/immunity network (α-1 antitrypsin, angiotensinogen, complement component C3, recombination-activating protein-1 and warm temperature acclimation-related 65 kDa protein).  相似文献   

20.
The effect of decreased environmental salinity on growth hormone producing cells (GH cells) of the adenohypophysial proximal pars distalis has been studied in the gilthead sea bream ( Sparus aurata L.) adapted to sea water (SW, 980 mosmol kg −1) and brackish water (BW, 200 mosmol kg −1). A combined immunocytochemical, morphometric and electron microscopic study was carried out. GH cells offish adapted to BW occupied a greater hypophysial volume (about 21% of the total hypophysial volume in BW, 17% in SW) and had a larger nuclear area (mean 16 μm2 in BW, 13 μm2 in SW) than GH cells of SW-adapted fish. The immunoreactivity against a salmon GH-antiserum was lower in BW (mean optical density 142 in BW, 159 in SW). Ultrastructural characteristics of GH cells of BW-adapted fish were distended rough endo-plasmatic reticulum and large secretory granules (about 216 nm in diameter for BW, 209 nm in SW). Volumetric, densitometric and ultrastructural evidence suggested that the synthesis and release of GH were activated in S. aurata adapted to hypo-osmotic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号