首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-degrading enzyme (IDE) is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ), and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD). Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s) remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA), monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT) overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoyl)benzoyl-ATP (Bz-ATP). The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.  相似文献   

2.
3.
Summary Direct activity determination by a flow-through microcalorimetry in the enzyme thermistor system was employed for a fast comparison of (poly)acrylamide gel-entrapped penicillin G acylase preparations. Composition of the pre-polymerization cocktail and both the storage and operational stabilities of optimal gel-entrapped enzyme preparations isolated from the Escherichia coli industrial strain were optimized by this method. The validity of the results was corroborated by spectrophotometric measurements.  相似文献   

4.
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by a progressive loss of the spinal motoneurons. The SMA-determining gene has been termed survival motor neuron (SMN) and is deleted or mutated in over 98% of patients. The encoded gene product is a protein expressed as different isoforms. In particular, we showed that the rat SMN cDNA produces two isoforms with M(r) of 32 and 35kDa, both localized in nuclear coiled bodies, but the 32kDa form is also cytoplasmic, whereas the 35kDa form is also microsomal. To determine the molecular relationship between these two isoforms and potential post-translational modifications, we performed transfection experiments with a double-tagged rat SMN. Immunoblot and immunostaining studies demonstrated that the 32kDa SMN isoform derives from the full length 35kDa, through a proteolytic cleavage at the C-terminal. Furthermore, the 35kDa SMN isoform is physiologically phosphorylated in vivo. This may modulate its interaction with molecular partners, either proteins or nucleic acids.  相似文献   

5.
6.
Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.  相似文献   

7.
8.
The expression of the SmB and SmB' spliceosome proteins in a variety of cell types and tissues has been investigated. Although SmB is found in all cells studied, the SmB' protein is found only in a small number of rodent cell types. The presence of this protein is correlated with the ability to utilize an alternative pathway of RNA splicing which is not available in most cell types. This is the first demonstration of tissue specific expression of a protein component of the spliceo-some and suggests a role for SmB' in the regulation of some cases of alternative RNA splicing.  相似文献   

9.
10.
Ligand-induced conditional protein splicing (CPS) using a split intein allows the covalent reconstitution of a protein from two polypeptide fragments. The small molecule rapamycin binds to the fused FKBP and FRB dimerizer domains and thereby induces folding of the split intein, which then removes itself in the trans-splicing reaction. CPS has great potential for the experimental control of protein activity in living cells, however, only one such example was reported yet. This discrepancy is due to the challenging reconstitution of a protein from two inactive fragments because of folding, stability, and solubility issues. Moreover, in CPS the split intein must be active in the specific sequence context. We here report the novel concept, design, and application of a CPS cassette for facile target gene modification to identify active split intein insertion sites. The CPS cassette encodes the split intein and dimerizer domain gene fragments as well as a selectable genetic marker for yeast. The addition of short sequences in the PCR-amplification of the CPS cassette allowed its site-specific insertion into the target gene by homologous recombination. Our approach thus avoids the extensive DNA cloning steps typically required. By this strategy, we identified two CPS variants of the tobacco etch virus (TEV) protease that are conditionally activated by rapamycin in yeast and we show their potential for the manipulation of intracellular proteins through proteolysis events. Our results suggest that more proteins will be amenable to CPS control and that intein cassette integration is a powerful tool for the development of such conditional variants as well as for other application of cis- and trans-splicing inteins.  相似文献   

11.
12.
13.
Diabetic hearts are known to be more susceptible to ischemic disease. Biguanides, like metformin, are known antidiabetic drugs that lower blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in muscle. Part of these metabolic effects is thought to be mediated by the activation of AMP-activated protein kinase (AMPK). In this work, we studied the relationship between AMPK activation and glucose uptake stimulation by biguanides and oligomycin, another AMPK activator, in both insulin-sensitive and insulin-resistant cardiomyocytes. In insulin-sensitive cardiomyocytes, insulin, biguanides and oligomycin were able to stimulate glucose uptake with the same efficiency. Stimulation of glucose uptake by insulin or biguanides was correlated to protein kinase B (PKB) or AMPK activation, respectively, and were additive. In insulin-resistant cardiomyocytes, where insulin stimulation of glucose uptake was greatly reduced, biguanides or oligomycin, in the absence of insulin, induced a higher stimulation of glucose uptake than that obtained in insulin-sensitive cells. This stimulation was correlated with the activation of both AMPK and PKB and was sensitive to the phosphatidylinositol-3-kinase/PKB pathway inhibitors. Finally, an adenoviral-mediated expression of a constitutively active form of AMPK increased both PKB phosphorylation and glucose uptake in insulin-resistant cardiomyocytes. We concluded that AMPK activators, like biguanides and oligomycin, are able to restore glucose uptake stimulation, in the absence of insulin, in insulin-resistant cardiomyocytes via the additive activation of AMPK and PKB. Our results suggest that AMPK activation could restore normal glucose metabolism in diabetic hearts and could be a potential therapeutic approach to treat insulin resistance.  相似文献   

14.
Our objective is to produce a protein biosensor (or molecular switch) that is specifically activated in solution by a monoclonal antibody. Many effector-dependent enzymes have evolved in nature, but the introduction of a novel regulatory mechanism into a normally unregulated enzyme poses a difficult design problem. We used site-saturation mutagenesis and screening to generate effector-activated variants of the reporter enzyme beta-glucuronidase (GUS). The specific activity of the purified epitope-tagged GUS variant was increased by up to approximately 500-fold by the addition of an equimolar concentration of a monoclonal antibody. This molecular switch is modular in design, so it can easily be re-engineered for the detection of other peptide-specific antibodies. Such antibody-activated reporters could someday enable point-of-care serological assays for the rapid detection of infectious diseases.  相似文献   

15.
16.
17.
SR proteins are essential for the splicing of messenger RNA precursors in vitro, where they also alter splice site selection in a concentration-dependent manner. Although experiments involving overexpression or dominant mutations have confirmed that these proteins can influence RNA processing decisions in vivo, similar results with loss-of-function mutations have been lacking. Now, a system for genetic depletion of the chicken B cell line DT40 has revealed that the SR protein ASF/SF2 (alternative splicing factor/splicing factor 2) is essential for viability in these cells(1). This study opens the way for a complete functional dissection of this protein, and other SR proteins, in vivo.  相似文献   

18.
Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury.  相似文献   

19.
Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.  相似文献   

20.
Variations in the intein-mediated protein splicing mechanism are becoming more apparent as polymorphisms in conserved catalytic residues are identified. The conserved Ser or Cys at the intein N-terminus and the conserved intein penultimate His are absent in the KlbA family of inteins. These inteins were predicted to be inactive, since an N-terminal Ala cannot perform the initial reaction of the standard protein splicing pathway to yield the requisite N-terminal splice junction (thio)ester. Despite the presence of an N-terminal Ala and a penultimate Ser, the KlbA inteins splice efficiently using an alternative protein splicing mechanism. In this non-canonical pathway, the C-extein nucleophile attacks a peptide bond at the N-terminal splice junction rather than a (thio)ester bond, alleviating the need to form the initial (thio)ester at the N-terminal splice junction. The remainder of the two pathways is the same: branch resolution by Asn cyclization is followed by an acyl rearrangement to form a native peptide bond between the ligated exteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号