首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ca2+ signaling protein calmodulin (CaM) stimulates Ca2+ pumping in the plasma-membrane Ca2+-ATPase (PMCA) by binding to an autoinhibitory domain, which then dissociates from the catalytic domain of PMCA to allow full activation of the enzyme. We measured single-molecule fluorescence trajectories with polarization modulation to track the conformation of the autoinhibitory domain of PMCA pump bound to fluorescently labeled CaM. Interchange of the autoinhibitory domain between associated and dissociated conformations was detected at a physiological Ca2+ concentration of 0.15 microM, where the enzyme is only partially active, but not at 25 microM, where the enzyme is fully activated. In previous work we showed that the conformation of the autoinhibitory domain in PMCA-CaM complexes could be monitored by the extent of modulation of single-molecule fluorescence generated with rotating excitation polarization. In the present work, we determined the timescale of association and dissociation of the autoinhibitory domain with the catalytic regions of the PMCA. Association of the autoinhibitory domain was rare at a high Ca2+ concentration (25 microM). At a lower Ca2+ concentration (0.15 microM), conformations of the autoinhibitory domain interchanged with a dissociation rate of 0.042 +/- 0.011 sec(-1) and an association rate of 0.023 +/- 0.006 sec-1. The results indicate that the response time of PMCA upon a reduction in Ca2+ is limited to tens of seconds by autoinhibitory dynamics. This property may reduce the sensitivity of PMCA to transient reductions in intracellular Ca2+. We suggest that the dynamics of the autoinhibitory domain may play a novel role in regulating PMCA activity.  相似文献   

2.
We present a method of labeling and immobilizing a low-molecular-weight protein, calmodulin (CaM), by fusion to a larger protein, maltose binding protein (MBP), for single-molecule fluorescence experiments. Immobilization in an agarose gel matrix eliminates potential interactions of the protein and the fluorophore(s) with a glass surface and allows prolonged monitoring of protein dynamics. The small size of CaM hinders its immobilization in low-weight-percentage agarose gels; however, fusion of CaM to MBP via a flexible linker provides sufficient restriction of translational mobility in 1% agarose gels. Cysteine residues were engineered into MBP.CaM (MBP-T34C,T110C-CaM) and labeled with donor and acceptor fluorescent probes yielding a construct (MBP.CaM-DA) which can be used for single-molecule single-pair fluorescence resonance energy transfer (spFRET) experiments. Mass spectrometry was used to verify the mass of MBP.CaM-DA. Assays measuring the activity of CaM reveal minimal activity differences between wild-type CaM and MBP.CaM-DA. Single-molecule fluorescence images of the donor and acceptor dyes were fit to a two-dimensional Gaussian function to demonstrate colocalization of donor and acceptor dyes. FRET is demonstrated both in bulk fluorescence spectra and in fluorescence trajectories of single MBP.CaM-DA molecules. The extension of this method to other biomolecules is also proposed.  相似文献   

3.
Cardiac myocyte intracellular calcium varies beat-to-beat and calmodulin (CaM) transduces Ca2+ signals to regulate many cellular processes (e.g. via CaM targets such as CaM-dependent kinase and calcineurin). However, little is known about the dynamics of how CaM targets process the Ca2+ signals to generate appropriate biological responses in the heart. We hypothesized that the different affinities of CaM targets for the Ca2+-bound CaM (Ca2+-CaM) shape their actions through dynamic and tonic interactions in response to the repetitive Ca2+ signals in myocytes. To test our hypothesis, we used two fluorescence resonance energy transfer-based biosensors, BsCaM-45 (Kd = approximately 45 nm) and BsCaM-2 (Kd = approximately 2 nm), to monitor the real time Ca2+-CaM dynamics at low and high affinity CaM targets in paced adult ventricular myocytes. Compared with BsCaM-2, BsCaM-45 tracks the beat-to-beat Ca2+-CaM alterations more closely following the Ca2+ oscillations at each myocyte contraction. When pacing frequency is raised from 0.1 to 1.0 Hz, the higher affinity BsCaM-2 demonstrates significant elevation of diastolic Ca2+-CaM binding compared with the lower affinity BsCaM-45. Biochemically detailed computational models of Ca2+-CaM biosensors in beating cardiac myocytes revealed that the different Ca2+-CaM binding affinities of BsCaM-2 and BsCaM-45 are sufficient to predict their differing kinetics and diastolic integration. Thus, data from both experiments and computational modeling suggest that CaM targets with low versus high Ca2+-CaM affinities (like CaM-dependent kinase versus calcineurin) respond differentially to the same Ca2+ signal (phasic versus integrating), presumably tuned appropriately for their respective and distinct Ca2+ signaling pathways.  相似文献   

4.
We used single-molecule fluorescence spectroscopy to probe the conformation of calmodulin (CaM) bound to oxidatively modified plasma-membrane Ca(2+)-ATPase (PMCAox). We found that oxidative modification altered the coupling between the ATP binding domain and the autoinhibitory domain. Oxidative modification of PMCA is known to result in a loss of activity for the enzyme. Conformations of PMCAox-CaM complexes were probed by single-molecule polarization modulation spectroscopy, which measured the orientational mobility of fluorescently labeled CaM bound to PMCAox. We detected an enhanced population of PMCAox-CaM complexes with a low orientational mobility in the presence of ATP, whereas nonoxidized PMCA-CaM complexes existed almost exclusively in a high-mobility state in the presence of ATP. We have previously attributed such high-mobility states to PMCA-CaM complexes with a dissociated autoinhibitory/CaM binding domain, whereas the lower-mobility state was attributed to autoinhibited PMCA-CaM complexes with a nondissociated autoinhibitory domain [Osborn, K. D., et al. (2004) Biophys. J. 87, 1892-1899]. In the absence of ATP, the orientational mobility distributions are similar for CaM complexed with oxidized PMCA or nonoxidized PMCA. These results suggest that oxidative modification of PMCA reduced the propensity of the autoinhibitory domain to dissociate from binding sites near the catalytic core of the enzyme with bound nucleotide upon CaM stimulation in the presence of Ca(2+). This interpretation was further supported by chymotrypsin proteolysis, which probes the tightness of binding of the autoinhibitory domain to sites near the catalytic core of the enzyme. Enhanced proteolysis was observed for PMCA upon binding CaM or ATP. In contrast, proteolysis was partially blocked for oxidatively modified PMCA, even in the presence of ATP.  相似文献   

5.
The plasma membrane calcium-ATPase (PMCA) helps to control cytosolic calcium levels by pumping out excess Ca2+. PMCA is regulated by the Ca2+ signaling protein calmodulin (CaM), which stimulates PMCA activity by binding to an autoinhibitory domain of PMCA. We used single-molecule polarization methods to investigate the mechanism of regulation of the PMCA by CaM fluorescently labeled with tetramethylrhodamine. The orientational mobility of PMCA-CaM complexes was determined from the extent of modulation of single-molecule fluorescence upon excitation with a rotating polarization. At a high Ca2+ concentration, the distribution of modulation depths reveals that CaM bound to PMCA is orientationally mobile, as expected for a dissociated autoinhibitory domain of PMCA. In contrast, at a reduced Ca2+ concentration a population of PMCA-CaM complexes appears with significantly reduced orientational mobility. This population can be attributed to PMCA-CaM complexes in which the autoinhibitory domain is not dissociated, and thus the PMCA is inactive. The presence of these complexes demonstrates the inadequacy of a two-state model of Ca2+ pump activation and suggests a regulatory role for the low-mobility state of the complex. When ATP is present, only the high-mobility state is detected, revealing an altered interaction between the autoinhibitory and nucleotide-binding domains.  相似文献   

6.
In recent years, single-molecule methods have enabled many innovative studies in the life sciences, which generated unprecedented insights into the workings of many macromolecular machineries. Single-molecule studies of bioinorganic systems have been limited, however, even though bioinorganic chemistry represents one of the frontiers in the life sciences. With the hope to stimulate more interest in applying existing and developing new single-molecule methods to address compelling bioinorganic problems, this review discusses a few single-molecule fluorescence approaches that have been or can be employed to study the functions and dynamics of metalloproteins. We focus on their principles, features and generality, possible further bioinorganic applications, and experimental challenges. The fluorescence quenching via energy transfer approach has been used to study the O2-binding of hemocyanin, the redox states of azurin, and the folding dynamics of cytochrome c at the single-molecule level. Possible future applications of this approach to single-molecule studies of metalloenzyme catalysis and metalloprotein folding are discussed. The fluorescence quenching via electron transfer approach can probe the subtle conformational dynamics of proteins, and its possible application to probe metalloprotein structural dynamics is discussed. More examples are presented in using single-molecule fluorescence resonance energy transfer to probe metallochaperone protein interactions and metalloregulator-DNA interactions on a single-molecule basis.  相似文献   

7.
Methionines can play an important role in modulating protein-protein interactions associated with intracellular signaling, and their reversible oxidation to form methionine sulfoxides [Met(O)] in calmodulin (CaM) and other signaling proteins has been suggested to couple cellular redox changes to protein functional changes through the action of methionine sulfoxide reductases (Msr). Prior measurements indicate the full recovery of target protein activation upon the stereospecific reduction of oxidized CaM by MsrA, where the formation of the S-stereoisomer of Met(O) selectively inhibits the CaM-dependent activation of the Ca-ATPase. However, the physiological substrates of MsrA remain unclear, as neither the binding specificities nor affinities of protein targets have been measured. To assess the specificity of binding and its possible importance in the maintenance of CaM function, we have measured the kinetics of repair and the binding affinity between oxidized CaM and MsrA. Reduction of Met(O) in fully oxidized CaM by MsrA is sensitive to the protein fold, as repair of the intact protein is incomplete, with >6 Met(O) remaining in each CaM following MsrA reduction. In contrast, following proteolytic digestion, MsrA is able to fully reduce one-half of the oxidized methionines, indicating that surface-accessible Met(O) within folded proteins need not be substrates for MsrA repair. Mutation of the active site (i.e., C72S) in MsrA permitted equilibrium-binding measurements using both ensemble and single-molecule fluorescence correlation spectroscopy measurements. We observe cooperative binding of two MsrA to each CaMox with an apparent affinity (K = 70 +/- 10 nM) that is 3 orders of magnitude greater than the Michaelis constant (KM = 68 +/- 4 microM). The high-affinity and cooperative interaction between MsrA and CaMox suggests an important regulatory role of MsrA in the binding and reduction of Met(O) in functionally sensitive proteins, such that multiple MsrA proteins are recruited to simultaneously bind and reduce Met(O) in highly oxidized proteins. Given the suggested role of Met(O) in modulating reversible binding interactions between proteins associated with cellular signaling, these results indicate an ability of MsrA to selectively reduce Met(O) within highly surface-accessible sequences to maintain cellular function as part of an adaptive response to oxidative stress.  相似文献   

8.
A calmodulin (CaM) mutant (T34,110C-CaM) doubly labeled with fluorescence probes AlexaFluor 488 and Texas Red in opposing domains (CaM-DA) has been used to examine conformational heterogeneity in CaM by single-pair fluorescence resonance energy transfer (spFRET). Burst-integrated FRET efficiencies of freely diffusing CaM-DA single molecules yielded distributions of distance between domains of CaM-DA. We recently reported distinct conformational substates of Ca(2+)-CaM-DA and apoCaM-DA, with peaks in the distance distributions centered at approximately 28 A, 34-38 A, and 55 A [Slaughter et al. (2004) J. Phys. Chem. B 108, 10388-10397]. In the present study, shifts in the amplitudes and center distances of the conformational substates were detected with variation in solution conditions. The amplitude of an extended conformation was observed to change as a function of Ca(2+) over a free Ca(2+) range that is consistent with binding to the high affinity, C-terminal Ca(2+) binding sites, suggesting the existence of communication between lobes of CaM. Lowering pH shifted the relative amplitudes of the conformations, with a marked increase in the presence of the compact conformations and an almost complete absence of the extended conformation. In addition, the single-molecule distance distribution of apoCaM-DA at reduced ionic strength was shifted to longer distance and showed evidence of an increase in conformational heterogeneity relative to apoCaM-DA at physiological ionic strength. Oxidation of methionine residues in CaM-DA produced a substantial increase in the amplitude of the extended conformation relative to the more compact conformation. The results are considered in light of a hypothesis that suggests that electrostatic interactions between charged amino acid side chains play an important role in determining the most stable CaM conformation under varying solution conditions.  相似文献   

9.
Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium‐binding protein exhibits a broad range of structural transitions, including domain opening and folding–unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well‐known, it has been challenging to examine the dynamics of transition between these structures in real‐time, due to a lack of suitable spectroscopic probes of CaM structure. In this article, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C‐terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in tertiary contacts at the interdomain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation‐sensitive tyrosine residues, opening a path to time‐resolved studies of CaM dynamics using Raman spectroscopy.  相似文献   

10.
The four integral delta subunits of the phosphorylase kinase (PhK) complex are identical to calmodulin (CaM) and confer Ca(2+) sensitivity to the enzyme, but bind independently of Ca(2+). In addition to binding Ca(2+), an obligatory activator of PhK's phosphoryltransferase activity, the delta subunits transmit allosteric signals to PhK's remaining alpha, beta, and gamma subunits in activating the enzyme. Under mild conditions about 10% of the delta subunits can be exchanged for exogenous CaM. In this study, a CaM double-mutant derivatized with a fluorescent donor-acceptor pair (CaM-DA) was exchanged for delta to assess the conformational substates of PhKdelta by single molecule fluorescence resonance energy transfer (FRET) +/-Ca(2+). The exchanged subunits were determined to occupy distinct conformations, depending on the absence or presence of Ca(2+), as observed by alterations of the compact, mid-length, and extended populations of their FRET distance distributions. Specifically, the combined predominant mid-length and less common compact conformations of PhKdelta became less abundant in the presence of Ca(2+), with the delta subunits assuming more extended conformations. This behavior is in contrast to the compact forms commonly observed for many of CaM's Ca(2+)-dependent interactions with other proteins. In addition, the conformational distributions of the exchanged PhKdelta subunits were distinct from those of CaM-DA free in solution, +/-Ca(2+), as well as from exogenous CaM bound to the PhK complex as delta'. The distinction between delta and delta' is that the latter binds only in the presence of Ca(2+), but stoichiometrically and at a different location in the complex than delta.  相似文献   

11.
Mutations in the tuberous sclerosis 2 (TSC2) gene product have been genetically linked to the pathology of both tuberous sclerosis (TSC) and the gender-specific lung disease, lymphangioleiomyomatosis (LAM). Both diseases are classified as disorders of cellular migration, proliferation, and differentiation. Earlier studies from our laboratory (1) linked TSC2 with steroid/nuclear receptor signaling. Studies presented here provide evidence for calmodulin (CaM) signaling in the propagation of this TSC2 activity. Far Western screening of a lambda phage human brain cDNA library to identify interacting proteins for the TSC2 gene product (tuberin) yielded multiple clones encoding human CaM. Direct binding with 32P-labeled tuberin demonstrated Ca2+-dependent binding to CaM-Sepharose which was lost upon deletion of the C-terminal 72 residues. The sequence (1740)WIARLRHIKRLRQRIC(1755) was identified as one capable of forming a basic amphipathic helix indicative of CaM binding domains in known calmodulin binding proteins. Studies with a synthetic peptide of this sequence demonstrated very tight Ca2+-dependent binding to CaM as judged by tryptophan fluorescence perturbation studies and phosphodiesterase activation by CaM. Deletion mutagenesis studies further suggested that this CaM binding domain is required for tuberin modulation of steroid receptor function and that mutations in this region may be involved in the pathology of TSC and LAM.  相似文献   

12.
Calcium sensor proteins translate transient increases in intracellular calcium levels into metabolic or mechanical responses, by undergoing dramatic conformational changes upon Ca2+ binding. A detailed analysis of the calcium binding-induced conformational changes in the representative calcium sensors calmodulin (CaM) and troponin C was performed to obtain insights into the underlying molecular basis for their response to the binding of calcium. Distance difference matrices, analysis of interresidue contacts, comparisons of interhelical angles, and inspection of structures using molecular graphics were used to make unbiased comparisons of the various structures. The calcium-induced conformational changes in these proteins are dominated by reorganization of the packing of the four helices within each domain. Comparison of the closed and open conformations confirms that calcium binding causes opening within each of the EF-hands. A secondary analysis of the conformation of the C-terminal domain of CaM (CaM-C) clearly shows that CaM-C occupies a closed conformation in the absence of calcium that is distinct from the semi-open conformation observed in the C-terminal EF-hand domains of myosin light chains. These studies provide insight into the structural basis for these changes and into the differential response to calcium binding of various members of the EF-hand calcium-binding protein family. Factors contributing to the stability of the Ca2+-loaded open conformation are discussed, including a new hypothesis that critical hydrophobic interactions stabilize the open conformation in Ca2+ sensors, but are absent in "non-sensor" proteins that remain closed upon Ca2+ binding. A role for methionine residues in stabilizing the open conformation is also proposed.  相似文献   

13.
Lin J  Shaw AS 《Cell》2005,121(6):815-816
The role of plasma-membrane microdomains in the organization of signaling proteins has been a controversial topic in T cell signaling. In this issue of Cell, use of single-molecule fluorescence suggests that protein-protein interactions, not detergent insolubility, regulate the assembly of signaling complexes in the plasma membrane.  相似文献   

14.
Boschek CB  Sun H  Bigelow DJ  Squier TC 《Biochemistry》2008,47(6):1640-1651
We have used fluorescence spectroscopy to investigate the structure of calmodulin (CaM) bound with CaM-binding sequences of either the plasma membrane Ca-ATPase or the skeletal muscle ryanodine receptor (RyR1) calcium release channel. Following derivatization with N-(1-pyrene)maleimide at engineered sites (T34C and T110C) within the N- and C-domains of CaM, contact interactions between these opposing domains of CaM resulted in excimer fluorescence that permits us to monitor conformational states of bound CaM. Complementary measurements take advantage of the unique conserved Trp within CaM-binding sequences that functions as a hydrophobic anchor in CaM binding and permits measurements of both a local and global peptide structure. We find that CaM binds with high affinity in a collapsed structure to the CaM-binding sequences of both the Ca-ATPase and RyR1, resulting in excimer formation that is indicative of contact interactions between the N- and the C-domains of CaM in complex with these CaM-binding peptides. There is a 4-fold larger amount of excimer formation for CaM bound to the CaM-binding sequence of the Ca-ATPase in comparison to RyR1, indicating a closer structural coupling between CaM domains in this complex. Prior to CaM association, the CaM-binding sequences of the Ca-ATPase and RyR1 are conformationally disordered. Upon CaM association, the CaM-binding sequence of the Ca-ATPase assumes a highly ordered structure. In comparison, the CaM-binding sequence of RyR1 remains conformationally disordered irrespective of CaM binding. These results suggest an important role for interdomain contact interactions between the opposing domains of CaM in stabilizing the structure of the peptide complex. The substantially different structural responses associated with CaM binding to Ca-ATPase and RyR1 indicates a plasticity in their respective binding mechanisms that accomplishes different physical mechanisms of allosteric regulation, involving either the dissociation of a C-terminal regulatory domain necessary for pump activation or the modulation of intersubunit interactions to diminish RyR1 channel activity.  相似文献   

15.
H Sun  D Yin  T C Squier 《Biochemistry》1999,38(38):12266-12279
We have used fluorescence spectroscopy to investigate the average structure and extent of conformational heterogeneity associated with the central helix in calmodulin (CaM), a sequence that contributes to calcium binding sites 2 and 3 and connects the amino- and carboxyl-terminal globular domains. Using site-directed mutagenesis, a double mutant was constructed involving conservative substitution of Tyr(99) --> Trp(99) and Leu(69) --> Cys(69) with no significant effect on the secondary structure of CaM. These mutation sites are at opposite ends of the central helix. Trp(99) acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements of the conformation of the central helix. Cys(69) provides a reactive group for the covalent attachment of the FRET acceptor 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). AEDANS-modified CaM fully activates the plasma membrane (PM) Ca-ATPase, indicating that the native structure is retained following site-directed mutagenesis and chemical modification. We find that the average spatial separation between Trp(99) and AEDANS covalently bound to Cys(69) decreases by approximately 7 +/- 2 A upon calcium binding. However, irrespective of calcium binding, there is little change in the conformational heterogeneity associated with the central helix under physiologically relevant conditions (i.e., pH 7.5, 0.1 M KCl). These results indicate that calcium activation alters the spatial arrangement of the opposing globular domains between two defined conformations. In contrast, under conditions of low ionic strength or pH the structure of CaM is altered and the conformational heterogeneity of the central helix is decreased upon calcium activation. These results suggest the presence of important ionizable groups that affect the structure of the central helix, which may play an important role in mediating the ability of CaM to rapidly bind and activate target proteins.  相似文献   

16.
A new role for IQ motif proteins in regulating calmodulin function   总被引:3,自引:0,他引:3  
IQ motifs are found in diverse families of calmodulin (CaM)-binding proteins. Some of these, like PEP-19 and RC3, are highly abundant in neuronal tissues, but being devoid of catalytic activity, their biological roles are not understood. We hypothesized that these IQ motif proteins might have unique effects on the Ca2+ binding properties of CaM, since they bind to CaM in the presence or absence of Ca2+. Here we show that PEP-19 accelerates by 40 to 50-fold both the slow association and dissociation of Ca2+ from the C-domain of free CaM, and we identify the sites of interaction between CaM and PEP-19 using NMR. Importantly, we demonstrate that PEP-19 can also increase the rate of dissociation of Ca2+ from CaM when bound to intact CaM-dependent protein kinase II. Thus, PEP-19, and presumably similar members of the IQ family of proteins, has the potential to alter the Ca2+-binding dynamics of free CaM and CaM that is bound to other target proteins. Since Ca2+ binding to the C-domain of CaM is the rate-limiting step for activation of CaM-dependent enzymes, the data reveal a new concept of importance in understanding the temporal dynamics of Ca2+-dependent cell signaling.  相似文献   

17.
Intracellular Ca2+ acts as a second messenger that regulates numerous physiological cellular phenomena including development, differentiation and apoptosis. Cameleons, a class of fluorescent indicators for Ca2+ based on green fluorescent proteins (GFPs) and calmodulin (CaM), have proven to be a useful tool in measuring free Ca2+ concentrations in living cells. Traditional cameleons, however, have a small dynamic range of fluorescence resonance energy transfer (FRET), making subtle changes in Ca2+ concentrations difficult to detect and study in some cells and organelles. Using the NMR structure of CaM bound to the CaM binding peptide derived from CaM-dependent kinase kinase (CKKp), we have rationally designed a new cameleon that displays a two-fold increase in the FRET dynamic range within the physiologically significant range of cytoplasmic Ca2+ concentration of 0.05-1 microM.  相似文献   

18.
《Biophysical journal》2021,120(23):5196-5206
Mechanisms that regulate nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions and is activated by calmodulin (CaM) binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two NOS electron transfer domains in an FRET dye-labeled endothelial NOS reductase domain (eNOSr) and to understand how CaM affects the dynamics to regulate catalysis by shaping the spatial and temporal conformational behaviors of eNOSr. In addition, we developed and applied a new imaging approach capable of recording three-dimensional FRET efficiency versus time images to characterize the impact on dynamic conformal states of the eNOSr enzyme by the binding of CaM, which identifies clearly that CaM binding generates an extra new open state of eNOSr, resolving more detailed NOS conformational states and their fluctuation dynamics. We identified a new output state that has an extra open conformation that is only populated in the CaM-bound eNOSr. This may reveal the critical role of CaM in triggering NOS activity as it gives conformational flexibility for eNOSr to assume the electron transfer output FMN-heme state. Our results provide a dynamic link to recently reported EM static structure analyses and demonstrate a capable approach in probing and simultaneously analyzing all of the conformational states, their fluctuations, and the fluctuation dynamics for understanding the mechanism of NOS electron transfer, involving electron transfer among FAD, FMN, and heme domains, during nitric oxide synthesis.  相似文献   

19.
MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.  相似文献   

20.
In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca2+, leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca2+ and target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号