首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

2.
A novel transient outward K(+) current that exhibits inward-going rectification (I(to.ir)) was identified in guinea pig atrial and ventricular myocytes. I(to.ir) was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 micromol/l Ba(2+) or removal of external K(+). The zero current potential shifted 51-53 mV/decade change in external K(+). I(to.ir) density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At -20 mV, the fast inactivation time constants were 7.7 +/- 1.8 and 6.1 +/- 1.2 ms and the slow inactivation time constants were 85.1 +/- 14.8 and 77.3 +/- 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were -36.4 +/- 0.3 and -51.6 +/- 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 +/- 1.9 and 8.8 +/- 2.1 ms, respectively). I(to.ir) was detected in Na(+)-containing and Na(+)-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I(to.ir) contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba(2+)-sensitive and 4-AP-insensitive K(+) current has been overlooked.  相似文献   

3.
It has been suggested that the positive inotropic effect of the vasoactive peptide hormone, endothelin-1 (ET-1), involves inhibition of cardiac K(+) currents. In order to identify the K(+) currents modulated by ET-1, the outward K(+) currents of isolated rat ventricular myocytes were investigated using whole-cell patch-clamp recording techniques. Outward currents were elicited by depolarisation to +40 mV for 200 ms from the holding potential of -60 mV. Currents activated rapidly, reaching a peak (I(pk)) of 1310 +/- 115 pA and subsequently inactivating to an outward current level of 1063 +/- 122 pA at the end of the voltage-pulse (I(late)) (n = 11). ET-1 (20 nM) reduced I(pk) by 247.6 +/- 60.7 pA (n = 11, P < 0.01) and reduced I(late) by 323.2 +/- 43.9 pA (P < 0.001). The effects of ET-1 were abolished in the presence of the nonselective ET receptor antagonist, PD 142893 (10 microM, n = 5). Outward currents were considerably reduced and the effects of ET-1 were not observed when K(+) was replaced with Cs(+) in the experimental solutions; this indicates that ET-1 modulated K(+)-selective currents. A double-pulse protocol was used to investigate the inactivation of the currents. The voltage-dependent inactivation of the currents from potentials positive to -80 mV was fitted by a Boltzmann equation revealing the existence of an inactivating transient outward component (I(to)) and a noninactivating steady-state component (I(ss)). ET-1 markedly inhibited I(ss) by 43.0 +/- 3.8% (P < 0.001, n = 7) and shifted the voltage-dependent inactivation of I(to) by +3.3 +/- 1.2 mV (P < 0.05). Although ET-1 had little effect on the onset of inactivation of the currents elicited from a conditioning potential of -70 mV, the time-independent noninactivating component of the currents was markedly inhibited. In conclusion, the predominant effect of ET-1 was to inhibit a noninactivating steady-state background K(+) current (I(ss)). These results are consistent with the hypothesis that I(ss) inhibition contributes to the inotropic effects of ET-1.  相似文献   

4.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

5.
Wang W  Hu GY  Wang YP 《Life sciences》2006,78(26):2989-2997
Magnesium lithospermate B (MLB) is the main water-soluble principle of Salviae Miltiorrhizae Radix (also called as 'Danshen' in the traditional Chinese medicine) for the treatment of cardiovascular diseases. MLB was found to possess a variety of pharmacological actions. However, it is unclear whether and how MLB affects the cardiac ion channels. In the present study, the effects of MLB on the voltage-activated ionic currents were investigated in single ventricular myocytes of adult guinea pigs. MLB reversibly inhibited L-type Ca(2+) current (I(Ca,L)). The inhibition was use-dependent and voltage-dependent (the IC(50) value of MLB was 30 microM and 393 microM, respectively, at the holding potential of -50 mV and -100 mV). In the presence of 100 microM MLB, both the activation and steady-state inactivation curves of I(Ca,L) were markedly shifted to hyperpolarizing membrane potentials, whereas the time course of recovery of I(Ca,L) from inactivation was not altered. MLB up to 300 microM had no significant effect on the fast-inactivating Na(+) current (I(Na)), delayed rectifier K(+) current (I(K)) and inward rectifier K(+) current (I(K1)). The results suggest that the voltage-dependent Ca(2+) antagonistic effect of MLB work in concert with its antioxidant action for attenuating heart ischemic injury.  相似文献   

6.
Coexpression of the serum and glucocorticoid inducible kinase 1 (SGK1) up-regulates Kv channel activity in Xenopus oocytes and human embryonic kidney cells. To investigate the physiological impact of SGK1 dependent Kv channel regulation, we recorded whole-cell currents in lung fibroblasts from SGK1 knockout mice (sgk1-/-) and wild-type littermates (sgk1+/+). Serum-grown mouse lung fibroblasts (MLF) from both genotypes exhibited voltage-gated outwardly rectifying K(+)-currents with time-dependent activation (tau(act) approximately 3 msec), slow inactivation (tau(inact) approximately 700 msec), use-dependent inactivation, and (partial) inhibition by K(+) channel blockers TEA, 4-AP, and margatoxin. In serum grown MLF peak Kv current density at +100 mV was significantly lower in sgk1-/- (14 +/- 2 pA/pF, n = 13) than in sgk1+/+ (31 +/- 4 pA/pF, n = 16). PCR amplification of different Kv1 and Kv3 subunits from mouse fibroblasts demonstrated the expression of Kv1.1-1.7, Kv3.1, and Kv3.3 mRNA in both sgk1+/+ and sgk1-/- cells. Upon serum deprivation Kv currents almost disappeared in sgk1+/+ (4 +/- 1 pA/pF, n = 11) but not in sgk1-/- (10 +/- 1 pA/pF, n = 6) MLF. Accordingly, following serum deprivation Kv current density was significantly lower in sgk1+/+ than in sgk1-/-. Stimulation of serum-depleted cells with dexamethasone (dex) (1 microM, 1 day), IGF-1 (6.7 microM, 4-6 h) or both, significantly activated Kv currents in sgk1+/+ but not in sgk1-/- MLF. In the presence of both, dex and IGF-1, the Kv current density was significantly larger in sgk1+/+ (27 +/- 3 pA/pF, n = 12) than in sgk1-/- (13 +/- 3 pA/pF, n = 10) cells. Similar to MLF, Kv currents were significantly higher in sgk1+/+ mouse tail fibroblasts (MTF). In sgk1+/+ but not sgk1-/- MTF the Kv currents were inhibited upon serum deprivation and reincreased after stimulation of serum deprived MTF with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h). According to Fura-2-fluorescence capacitative Ca(2+) entry was lower in sgk1-/- MTF compared to sgk1+/+ MTF. Upon serum deprivation capacitative Ca(2+) entry decreased significantly in sgk1+/+ but not in sgk1-/- MTF. Stimulation of depleted cells with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h) reincreased capacitative Ca(2+) entry in sgk1+/+ MTF, whereas in sgk1-/- cells it remained unchanged. In conclusion, lack of SGK1 does not abrogate Kv channel activity but abolishes regulation of those channels by serum, glucocorticoids and IGF-1, an effect influencing capacitative Ca(2+) entry.  相似文献   

7.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

8.
D-ala2-D-leu5-enkephalin (100 to 1000 nM) reduces HVA Ca2+ currents of approximately 60% in 92% of the adult rat sensory neurons tested. In 80% of the cells sensitive to enkephalin, the reduction in Ca2+ current amplitude was associated with a prolongation of the current activation that was relieved by means of conditioning pulses in a potential range only about 10 mV positive to the current activation range in control conditions. The time course of the current activation was fitted to a single exponential in control, (tau = 2.23 msec +/- 0.14 n = 38) and double exponential with enkephalin, (tau 1 = 2.18 msec +/- 0.25 and tau 2 = 9.6 msec +/- 1, test pulse to -10 mV, 22 degrees C). A strong conditioning depolarizing prepulse speeded up the activation time course, completely eliminating the slow, voltage-sensitive exponential component, but it was only partial effective in restoring the current amplitude to control values. The voltage-independent inhibitory component that was not relieved could be recovered only by washing out enkephalin. In the remaining 20% of the cells affected, enkephalin decreased Ca2+ current amplitude without prolongation of Ca2+ channel activation. In these cases the conditioning voltage pulse was not effective in relieving the inhibition that persisted also at strong positive test potentials, on the outward currents. The voltage-dependent inhibition occurred slowly after enkephalin superfusion (tau congruent to 12 sec), whereas the voltage-independent one developed about ten times more rapidly. Dopamine (100 microM) could also induce both voltage-dependent and independent modulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Deng C  Yu X  Kuang S  Zhang W  Zhou Z  Zhang K  Qian W  Shan Z  Yang M  Wu S  Lin S 《Life sciences》2007,80(7):665-671
Carvedilol is a beta- and alpha(1)-adrenoceptor antagonist. It is widely used in the treatment of cardiovascular diseases including atrial arrhythmias. However, it is unclear whether carvedilol may affect the repolarization currents, transient outward K(+) current (I(to)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in the human atrium. The present study evaluated effects of carvedilol on I(to) and I(Kur) in isolated human atrial myocytes by whole-cell patch-clamp recording technique. We found that carvedilol reversibly inhibited I(to) and I(Kur) in a concentration-dependent manner. Carvedilol (0.3 microM) suppressed I(to) from 9.2+/-0.5 pA/pF to 4.8+/-0.5 pA/pF (P<0.01) and I(Kur) from 3.6+/-0.5 pA/pF to 1.9+/-0.3 pA/pF (P<0.01) at +50 mV. I(to) was inhibited in a voltage-dependent manner, being significantly attenuated at test potentials from +10 to +50 mV, whereas the inhibition of I(Kur) was independent. The concentration giving a 50% inhibition was 0.50 microM for I(to) and 0.39 microM for I(Kur). Voltage-dependence of activation, inactivation and time-dependent recovery from inactivation of I(to) were not altered by carvedilol. However, time to peak and time-dependent inactivation of I(to) were significantly accelerated, indicating an open channel blocking action. The findings indicate that carvedilol significantly inhibits the major repolarization K(+) currents I(to) and I(Kur) in human atrial myocytes.  相似文献   

10.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

11.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

12.
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.  相似文献   

13.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

14.
Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Zhou W  Chung I  Liu Z  Goldin AL  Dong K 《Neuron》2004,42(1):101-112
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.  相似文献   

16.
Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of I(K) relaxation [tau(I(K))] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. tau(I(K)) increases weakly with voltage from -500 to -20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = -0.29 e). Similarly, the steady state G(K)-V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z congruent with 0.4 e) at more negative voltages, where P(o) = 10(-5)-10(-6). These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca(2+), this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C-C and O-O transitions, whereas the C-O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca(2+)-activated K(+) channel voltage gating, but also have important implications for understanding the mechanism of Ca(2+) sensitivity.  相似文献   

17.
Cheng YP  Yin JX  Cheng LP  He RR 《生理学报》2004,56(2):243-247
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25 nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25 nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导.  相似文献   

18.
三羟异黄酮对豚鼠心室肌细胞L-型钙通道电流的影响   总被引:2,自引:0,他引:2  
Ji ES  Yin JX  Ma HJ  He RR 《生理学报》2004,56(4):466-470
本实验用全细胞膜片钳技术观察三羟异黄酮(genistein,GST)对豚鼠心室肌细胞L-钙通道电流(ICa、L)的影响。结果如下:(1)GST(10、50、100 μmol/L)可浓度依赖性地降低ICa,L(n=6,P<0.01)。GST的非活性结构类似物daidzein(100μmol/L),在同一浓度范围对ICa,L没有影响(n=5,P>0.05)。(2)GST使I-V曲线上移,但对ICa,L的电压依赖特征和最大激活电压无明显影响。(3)GST对ICa,L的激活动力学特性也无影响,但可使钙电流稳态失活曲线左移。V0.5从对照的-28.6±0.6 mV变为-32.8±1.1mV,κ值从对照的5.8±0.5 mV升至6.5±0.9 mV(n=6,P<0.05)。(4)GST明显使复活曲线右移,从而使ICa,L从失活状态下恢复明显减慢(n=7,P<0.01)。(5)酪氨酸磷酸酶抑制剂正钒酸钠(1 mmol/L)显著对抗GST引起的ICa,L抑制效应(n=6,P<0.01)。根据以上结果得出的结论是:GST抑制ICa,L加速钙通道失活和钙通道在失活状态下恢复减慢;GST对ICa,L的这种抑制作用与蛋白酪氨酸激酶(PTK)抑制有关。  相似文献   

19.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

20.
A subtype of retinal amacrine cells displayed a distinctive array of K(+) currents. Spontaneous miniature outward currents (SMOCs) were observed in the narrow voltage range of -60 to -40 mV. Depolarizations above approximately -40 mV were associated with the disappearance of SMOCs and the appearance of transient (I(to)) and sustained (I(so)) outward K(+) currents. I(to) appeared at about -40 mV and its apparent magnitude was biphasic with voltage, whereas I(so) appeared near -30 mV and increased linearly. SMOCs, I(to), and a component of I(so) were Ca(2+) dependent. SMOCs were spike shaped, occurred randomly, and had decay times appreciably longer than the time to peak. In the presence of cadmium or cobalt, SMOCs with pharmacologic properties identical to those seen in normal Ringer's could be generated at voltages of -20 mV and above. Their mean amplitude was Nernstian with respect to [K(+)](ext) and they were blocked by tetraethylammonium. SMOCs were inhibited by iberiotoxin, were insensitive to apamin, and eliminated by nominally Ca(2+)-free solutions, indicative of BK-type Ca(2+)-activated K(+) currents. Dihydropyridine Ca(2+) channel antagonists and agonists decreased and increased SMOC frequencies, respectively. Ca(2+) permeation through the kainic acid receptor had no effect. Blockade of organelle Ca(2+) channels by ryanodine, or intracellular Ca(2+) store depletion with caffeine, eradicated SMOCs. Internal Ca(2+) chelation with 10 mM BAPTA eliminated SMOCs, whereas 10 mM EGTA had no effect. These results suggest a mechanism whereby Ca(2+) influx through L-type Ca(2+) channels and its subsequent amplification by Ca(2+)-induced Ca(2+) release via the ryanodine receptor leads to a localized elevation of internal Ca(2+). This amplified Ca(2+) signal in turn activates BK channels in a discontinuous fashion, resulting in randomly occurring SMOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号