首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of aging on cardiac membrane currents remains unclear. This study examined the inward rectifier K(+) current (I(K1)), the transient outward K(+) current (I(to)), and the L-type Ca(2+) channel current (I(Ca,L)) in ventricular myocytes isolated from young adult (6 mo) and aged (>27 mo) Fischer 344 rats using whole cell patch-clamp techniques. Along with an increase in the cell size and membrane capacitance, aged myocytes had the same magnitude of peak I(K1) with a greater slope conductance but displayed smaller steady-state I(K1). Aged myocytes also had a greater I(to) with an increased rate of activation, but the I(to) inactivation kinetics, steady-state inactivation, and responsiveness to L-phenylephrine, an alpha(1)-adrenergic agonist, were unaltered. The magnitude of peak I(Ca,L) in aged myocytes was decreased and accompanied by a slower inactivation, but the I(Ca,L) steady-state inactivation was unaltered. Action potential duration in aged myocytes was prolonged only at 90% of full repolarization (APD(90)) when compared with the action potential duration of young adult myocytes. Aged myocytes from Long-Evans rats showed similar changes in I(to) and I(Ca,L) but an increased I(K1). These results demonstrate aging-associated changes in action potential, in morphology, and in I(K1), I(to), and I(Ca,L) of rat ventricular myocytes that possibly contribute to the decreased cardiac function of aged hearts.  相似文献   

2.
In the experiments here, the detailed kinetic properties of the Ca(2+)-independent, depolarization-activated outward currents (Iout) in enzymatically dispersed adult rat atrial myocytes were studied. Although there is only slight attenuation of peak Iout during brief (100 ms) voltage steps, substantial decay is evident during long (10 s) depolarizations. The analyses here reveal that current inactivation is best described by the sum of two exponential components, which we have termed IKf and IKs to denote the fast and slow components, respectively, of Iout decay. At all test potentials, IKf inactivates approximately 20-fold more rapidly than IKs. Neither the decay time constants nor the fraction of Iout remaining at the end of 10-s depolarizations varies over the potential range of 0 to +50 mV, indicating that the rates of inactivation and recovery from inactivation are voltage independent. IKf recovers from inactivation completely, independent of the recovery of IKs, and IKf recovers approximately 20 times faster than IKs. The pharmacological properties of IKf and IKs are similar: both components are sensitive to 4-aminopyridine (1-5 mM) and both are relatively resistant to externally applied tetraethylammonium (50 mM). Taken together, these findings suggest that IKf and IKs correspond to two functionally distinct K+ currents with similar voltage-dependent properties and pharmacologic sensitivities, but with markedly different rates of inactivation and recovery from inactivation. From the experimental data, several gating models were developed in which voltage-independent inactivation is coupled either to channel opening or to the activation of the individual channel subunits. Experimental testing of predictions of these models suggests that voltage-independent inactivation is coupled to activation, and that inactivation of only a single subunit is required to result in functional inactivation of the channels. This model closely approximates the properties of IKf and IKs, as well as the composite outward currents, measured in adult rat atrial myocytes.  相似文献   

3.
4.
Ba(2+) is widely used as a tool in patch-clamp studies because of its ability to block a variety of K(+) channels and to pass Ca(2+) channels. Its potential ability to block the cardiac transient outward K(+) current (I(to)) has not been clearly documented. We performed whole cell patch-clamp studies in canine ventricular and atrial myocytes. Extracellular application of Ba(2+) produced potent inhibition of I(to) with an IC(50) of approximately 40 microM. The effects were voltage independent, and the inactivation kinetics were not altered by Ba(2+). The potency of Ba(2+) was approximately 10 times higher than that of 4-aminopyridine (a selective I(to) blocker with an IC(50) of 430 microM) under identical conditions. By comparison, Ba(2+) blockade of the inward rectifier K(+) current was voltage dependent; the IC(50) was approximately 20 times lower (2.5 microM) than that for I(to) when determined at -100 mV and was comparable to I(to) as determined at -60 mV (IC(50) = 26 microM). Ba(2+) concentrations of 相似文献   

5.
Temperature has a strong influence on the excitability and the contractility of the ectothermic heart that can be alleviated in some species by temperature acclimation. The molecular mechanisms involved in the temperature-induced improvement of cardiac contractility and excitability are, however, still poorly known. The present study examines the role of sarcolemmal K(+) currents from rainbow trout (Oncorhynchus mykiss) cardiac myocytes after thermal acclimation. The two major K(+) conductances of the rainbow trout cardiac myocytes were identified as the Ba(2+)-sensitive background inward rectifier current (I(K1)) and the E-4031-sensitive delayed rectifier current (I(Kr)). In atrial cells, the density of I(K1) is very low and the density of I(Kr) is remarkably high. The opposite is true for ventricular cells. Acclimation to cold (4 degrees C) modified the two K(+) currents in opposite ways. Acclimation to cold increases the density of I(Kr) and depresses the density of I(K1). These changes in repolarizing K(+) currents alter the shape of the action potential, which is much shorter in cold-acclimated than warm-acclimated (17 degrees C) trout. These results provide the first concrete evidence that K(+) channels of trout cardiac myocytes are adaptable units that provide means to regulate cardiac excitability and contractility as a function of temperature.  相似文献   

6.
Deng C  Yu X  Kuang S  Zhang W  Zhou Z  Zhang K  Qian W  Shan Z  Yang M  Wu S  Lin S 《Life sciences》2007,80(7):665-671
Carvedilol is a beta- and alpha(1)-adrenoceptor antagonist. It is widely used in the treatment of cardiovascular diseases including atrial arrhythmias. However, it is unclear whether carvedilol may affect the repolarization currents, transient outward K(+) current (I(to)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in the human atrium. The present study evaluated effects of carvedilol on I(to) and I(Kur) in isolated human atrial myocytes by whole-cell patch-clamp recording technique. We found that carvedilol reversibly inhibited I(to) and I(Kur) in a concentration-dependent manner. Carvedilol (0.3 microM) suppressed I(to) from 9.2+/-0.5 pA/pF to 4.8+/-0.5 pA/pF (P<0.01) and I(Kur) from 3.6+/-0.5 pA/pF to 1.9+/-0.3 pA/pF (P<0.01) at +50 mV. I(to) was inhibited in a voltage-dependent manner, being significantly attenuated at test potentials from +10 to +50 mV, whereas the inhibition of I(Kur) was independent. The concentration giving a 50% inhibition was 0.50 microM for I(to) and 0.39 microM for I(Kur). Voltage-dependence of activation, inactivation and time-dependent recovery from inactivation of I(to) were not altered by carvedilol. However, time to peak and time-dependent inactivation of I(to) were significantly accelerated, indicating an open channel blocking action. The findings indicate that carvedilol significantly inhibits the major repolarization K(+) currents I(to) and I(Kur) in human atrial myocytes.  相似文献   

7.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

8.
Physiologically, human atrial and ventricular myocardium are coupled by an identical beating rate and rhythm. However, contractile behavior in atrial myocardium may be different from that in ventricular myocardium, and little is known about intracellular Ca(2+) handling in human atrium under physiological conditions. We used rapid cooling contractures (RCCs) to assess sarcoplasmic reticulum (SR) Ca(2+) content and the photoprotein aequorin to assess intracellular Ca(2+) transients in atrial and ventricular muscle strips isolated from nonfailing human hearts. In atrial myocardium (n = 19), isometric twitch force frequency dependently (0. 25-3 Hz) increased by 78 +/- 25% (at 3 Hz; P < 0.05). In parallel, aequorin light signals increased by 111 +/- 57% (P < 0.05) and RCC amplitudes by 49 +/- 13% (P < 0.05). Similar results were obtained in ventricular myocardium (n = 13). SR Ca(2+) uptake (relative to Na(+)/Ca(2+) exchange) frequency dependently increased in atrial and ventricular myocardium (P < 0.05). With increasing rest intervals (1-240 s), atrial myocardium (n = 7) exhibited a parallel decrease in postrest twitch force (at 240 s by 68 +/- 5%, P < 0.05) and RCCs (by 49 +/- 10%, P < 0.05). In contrast, postrest twitch force and RCCs significantly increased in ventricular myocardium (n = 6). We conclude that in human atrial and ventricular myocardium the positive force-frequency relation results from increased SR Ca(2+) turnover. In contrast, rest intervals in atrial myocardium are associated with depressed contractility and intracellular Ca(2+) handling, which may be due to rest-dependent SR Ca(2+) loss (Ca(2+) leak) and subsequent Ca(2+) extrusion via Na(+)/Ca(2+) exchange. Therefore, the influence of rate and rhythm on mechanical performance is not uniform in atrial and ventricular myocardium.  相似文献   

9.
Calcium-activated potassium currents have been described in a wide variety of cell types. This report summarizes some important properties of these currents in smooth muscle and provides examples from our recent single channel recordings from human cystic artery.  相似文献   

10.
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+).  相似文献   

11.
In manynonexcitable cells, hormones and neurotransmitters activateNa+ influx and mobilizeCa2+ from intracellular stores.The stores are replenished by Ca2+influx via "store-operated"Ca2+ channels (SOC). The mainroutes of Na+ entry in these cellsare unresolved, and no role forNa+ in signaling has beenrecognized. We demonstrate that the SOC are a majorNa+ entry route in arterialmyocytes. Unloading of the Ca2+stores with cyclopiazonic acid (a sarcoplasmic reticulumCa2+ pump inhibitor) and caffeineinduces a large externalNa+-dependent rise in thecytosolic Na+ concentration. Onecomponent of this rise in cytosolicNa+ concentration is likely due toNa+/Ca2+exchange; it depends on elevation of cytosolicCa2+ and is insensitive to 10 mMMg2+ and 10 µMLa3+. Another component isinhibited by Mg2+ andLa3+, blockers of SOC; thiscomponent persists in cells preloaded with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid to buffer Ca2+ transients andpreventNa+/Ca2+exchange-mediated Na+ entry. ThisNa+ entry apparently is mediatedby SOC. The Na+ entry influencesNa+ pump activity andNa+/Ca2+exchange and has unexpectedly large effects on cell-wideCa2+ signaling. The SOC pathwaymay be a general mechanism by which Na+ participates in signaling inmany types of cells.

  相似文献   

12.
13.
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC.  相似文献   

14.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

15.
We used whole-cell, voltage-clamp methodology to study the activation and inhibition of cationic currents in neutrophil. Cationic channels involved were impermeable to N-methyl-D-glucamine and to choline, but permeable to Na+, K+, Cs+, tris(hydroxymethyl)amino-ethane, and tetraethylammonium. N-formyl-L-methionyl-L-leucyl-L-phenylalanine, the Ca(2+)-ionophore A23187, and phorbol myristate acetate activated the cationic current. Activated currents showed voltage dependence and outward rectification. The Ca(2+)-chelator 1,2 bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate markedly inhibited A23187-induced currents, but only partially decreased phorbol ester- or chemoattractant-induced currents. Dibutyryl cAMP diminished only the chemoattractant-induced currents. The adenosine analogs 5'N-ethylcarboxamidoadenosine and N6-cyclohexyladenosine blocked the currents induced by all agents. Thus, we conclude that activation and inhibition of cationic channels in human neutrophils involve both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

16.
Fast two-dimensional confocal microscopy and the Ca(2+) indicator fluo-4 were used to study excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contain both subsarcolemmal junctional (j-SR) and central nonjunctional (nj-SR) sarcoplasmic reticulum. Action potentials elicited by field stimulation induced transient increases of intracellular Ca(2+) concentration ([Ca(2+)](i)) that were highly inhomogeneous. Increases started at distinct subsarcolemmal release sites spaced approximately 2 microm apart. The amplitude and the latency of Ca(2+) release from these sites varied from beat to beat. Subsarcolemmal release fused to build a peripheral ring of elevated [Ca(2+)](i), which actively propagated to the center of the cells via Ca(2+)-induced Ca(2+) release. Resting myocytes exhibited spontaneous Ca(2+) release events, including Ca(2+) sparks and local (microscopic) or global (macroscopic) [Ca(2+)](i) waves. The microscopic [Ca(2+)](i) waves propagated in a saltatory fashion along the sarcolemma ("coupled" Ca(2+) sparks) revealing the sequential activation of Ca(2+) release sites of the j-SR. Moreover, during global [Ca(2+)](i) waves, Ca(2+) release was evident from individual nj-SR sites. Ca(2+) release sites were arranged in a regular three-dimensional grid as deduced from the functional data and shown by immunostaining of ryanodine receptor Ca(2+) release channels. The longitudinal and transverse distances between individual Ca(2+) release sites were both approximately 2 microm. Furthermore, electron microscopy revealed a continuous sarcotubular network and one peripheral coupling of j-SR with the sarcolemma per sarcomere. The results demonstrate directly that, in cat atrial myocytes, the action potential-induced whole-cell [Ca(2+)](i) transient is the spatio-temporal summation of Ca(2+) release from subsarcolemmal and central sites. First, j-SR sites are activated in a stochastic fashion by the opening of voltage-dependent sarcolemmal Ca(2+) channels. Subsequently, nj-SR sites are activated by Ca(2+)-induced Ca(2+) release propagating from the periphery.  相似文献   

17.
Nitric oxide (NO)-mediated and NO-independent mechanisms of endothelium-dependent vasodilatation involve Ca(2+)-dependent K(+) (K(Ca)) channels. We examined the role in vivo of K(Ca) channels in NO-independent vasodilatation in hypercholesterolemia. Hindlimb vascular conductance was measured at rest and after aortic injection of ACh, bradykinin (BK), and sodium nitroprusside in anesthetized control and cholesterol-fed rabbits. Conductances were measured before and after treatment with the NO synthase antagonist N(omega)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) or K(Ca) blockers tetraethylammonium (30 mg/kg), charybdotoxin (10 microgram/kg), and apamin (50 microgram/kg). The contribution of NO to basal conductance was greater in control than in cholesterol-fed rabbits [2.2 +/- 0.4 vs. 1.1 +/- 0.3 (SE) ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05], but the NO-independent K(Ca) channel-mediated component was greater in the cholesterol-fed than in the control group (1.1 + 0.4 vs. 0.3 +/- 0.1 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05). Maximum conductance response to ACh and BK was less in cholesterol-fed than in control rabbits, and the difference persisted after L-NAME (ACh: 7.7 +/- 0.7 vs. 10.1 +/- 0.5 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.005). Blockade of K(Ca) channels with tetraethylammonium or charybdotoxin + apamin almost completely abolished L-NAME-resistant vasodilatation after ACh or BK. The magnitude of K(Ca)-mediated vasodilatation after ACh or BK was impaired in hypercholesterolemic rabbits. Vasodilator responses to nitroprusside did not differ between groups. In vivo, hypercholesterolemia is associated with an altered balance between NO-mediated and NO-independent K(Ca) channel contributions to resting vasomotor tone and impairment of both mechanisms of endothelium-dependent vasodilatation.  相似文献   

18.
Endothelialcell vascular cell adhesion molecule-1 (VCAM-1) activates adherentmonocytes by clustering their very late antigen-4 (VLA-4) receptors,resulting in the modulation of the inwardly rectifying(Iir) and delayed rectifying(Idr) K+ currents, hyperpolarizationof the cells, and enhanced Ca2+ influx (Colden-Stanfield Mand Gallin EK. Am J Physiol Cell Physiol 275:C267-C277, 1998; Colden-Stanfield M and Scanlon M. Am JPhysiol Cell Physiol 279: C488-C494, 2000). The present studywas undertaken to test the hypothesis that monoclonal antibodies(MAbs) against VLA-4 (MAbVLA-4) mimic VCAM-1 to cluster VLA-4integrins, which play a key role in signaling an increase in thesecretion of the proinflammatory cytokine interleukin-8 (IL-8). Wholecell ionic currents and IL-8 secretion from THP-1 monocytes that wereincubated on polystyrene, VCAM-1-immobilized MAbVLA-4 or anisotype-matched MAb against CD45 (MAbCD45) were measured. Clustering ofVLA-4 integrins with a cross-linked MAbVLA-4, but not a monovalentMAbVLA-4, modulated the K+ currents in an identical mannerto incubation of cells on VCAM-1. Similarly, cross-linked MAbVLA-4 orVCAM-1 augmented Ca2+-mediated IL-8 secretion from THP-1monocytes and was completely abolished by exposure to CsCl, anIir blocker. Thus VLA-4 integrin clustering bycross-linked MAbVLA-4 mimics VCAM-1/VLA-4 interactions sufficiently tobe associated with events leading to monocyte differentiation, enhancedCa2+-mediated macrophage function, and possiblyatherosclerotic plaque formation.

  相似文献   

19.
Recent studies demonstrate that endothelin-1 (ET-1) constricts human pulmonary arteries (PA). In this study, we examined possible mechanisms by which ET-1 might constrict human PA. In smooth muscle cells freshly isolated from these arteries, whole cell patch-clamp techniques were used to examine voltage-gated K(+) (K(V)) currents. K(V) currents were isolated by addition of 100 nM charybdotoxin and were identified by current characteristics and inhibition by 4-aminopyridine (10 mM). ET-1 (10(-8) M) caused significant inhibition of K(V) current. Staurosporine (1 nM), a protein kinase C (PKC) inhibitor, abolished the effect of ET-1. Rings of human intrapulmonary arteries (0.8-2 mm OD) were suspended in tissue baths for isometric tension recording. ET-1-induced contraction was maximal at 10(-8) M, equal to that induced by K(V) channel inhibition with 4-aminopyridine, and attenuated by PKC inhibitors. These data suggest that ET-1 constricts human PA, possibly because of myocyte depolarization via PKC-dependent inhibition of K(V). Our results are consistent with data we reported previously in the rat, suggesting similar mechanisms may be operative in both species.  相似文献   

20.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号