首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In anoxic marine sediments fatty acids may be oxidized directly by sulfate reducing bacteria, or may be oxidized by pathways which result in hydrogen production. Some of these latter reactions are quite sensitive to hydrogen concentrations ... in other words if hydrogen concentrations become elevated, fatty acid oxidation will cease. Thus sulfate reducers may actually play two important roles in the metabolism of fatty acids in marine sediments. The sulfate reducers both can utilize fatty acids directly, and also can oxidize hydrogen and thus control hydrogen partial pressures in the sediments. Therefore sulfate reducers may act indirectly to facilitate fatty acid oxidation by hydrogen-producing pathways. We carried out a series of incubations of slurried salt marsh sediment under high and low hydrogen partial pressures and in the presence and absence of molybdate to investigate the relative importance of sulfate reducers and other bacteria mediating hydrogen-sensitive reactions. Our results suggest that both classes of bacteria contribute significantly to fatty acid turnover in marine sediments. Studies of low molecular weight fatty acid turnover in sediment must explicitly recognize that manipulation of sediment (including addition of molydbate to inhibit sulfate reducers) may have a large impact on hydrogen partial pressures in sediment, and may thus significantly alter the pathways and/or rates of fatty acid turnover.  相似文献   

2.
Acetate and hydrogen metabolism by sulfate reducers and methanogens in the profundal sediments of an oligotrophic lake were examined. Inhibition of sulfate reduction with molybdate stimulated methane production from both hydrogen and acetate. Molybdate did not stimulate methane production in sediments that were preincubated to deplete the sulfate pool. Sulfate reduction accounted for 30 to 81% of the total of terminal metabolism proceeding through sulfate reduction and methane production in Eckman grab samples of surface sediments. The ability of sulfate reducers to effectively compete with methanogens for acetate was related to the sulfate reducers' lower half-saturation constant for acetate metabolism at in situ sulfate concentrations. Processes other than sulfate reduction and methanogenesis consumed hydrogen at elevated hydrogen partial pressures and prevented a kinetic analysis of hydrogen uptake by sulfate reducers and methanogens. The demonstration that sulfate reducers can successfully compete with methanogens for hydrogen and acetate in sediments at in situ sulfate concentrations of 60 to 105 μM extends the known range of sediment habitats in which sulfate reduction can be a dominant terminal process.  相似文献   

3.
In anaerobic coastal sediments, hydrolytic and/or fermentative bacteria degrade polymeric material and produce labile intermediates, which are used by terminal metabolizers to complete the conversion of organic material to CO2. We used molecular approaches to evaluate the response of two bacterial terminal metabolizer groups from a coastal tidal creek sediments, sulfate reducers and methanogens, to controlled changes in carbon resource supply. Tidal creek sediment bioreactors were established in April and August 2004. For each date, intact sediment sections were continuously supplied with flowthrough seawater that was either unamended or amended with the high-molecular-weight polysaccharide dextran. Biogeochemical data indicate that the activity of fermenting bacteria and the terminal metabolizers was limited by organic carbon supply during both experiments, with a significant increase in net volatile fatty acid (VFA) production and rates of sulfate reduction and methanogenesis following dextran addition. Community composition (measured by using terminal restriction fragment length polymorphism analysis, and functional gene [dsrA, mcrA] clone libraries) changed from April to August. However, community composition was not different between amended and unamended cores within each month, despite the change in resource level. Moreover, there was no relationship between community richness and evenness with resource level. This lack of variation in community composition with C addition could be attributed to the dynamic environment these sediment communities experience in situ. Fluctuations in VFA concentrations are most likely very high, so that the dominant bacterial species must be able to outcompete other species at both high and low resource levels.  相似文献   

4.
The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.  相似文献   

5.
The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and −1.7°C were determined. Most-probable-number counts were higher at 10°C than at 20°C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.  相似文献   

6.
The anoxic layers of marine sediments are dominated by sulfate reduction and methanogenesis as the main terminal oxidation processes. The aim of this study was to analyze the vertical succession of microbial populations involved in these processes along the first 4.5 m of a tidal-flat sediment. Therefore, a quantitative PCR approach was applied using primers targeting the domains of Bacteria and Archaea, and key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). The sampling site was characterized by an unusual sulfate peak at 250 cm depth resulting in separate sulfate-methane transition zones. Methane and sulfate profiles were diametrically opposed, with a methane maximum in the sulfate-depleted zone showing high numbers of archaea and methanogens. The methane-sulfate interfaces harbored elevated numbers of sulfate reducers, and revealed a slight increase in mcrA and archaeal 16S rRNA genes, suggesting sulfate-dependent anaerobic oxidation of methane. A diversity analysis of both functional genes by PCR-denaturing gradient gel electrophoresis revealed a vertical succession of subpopulations that were governed by geochemical and sedimentologic conditions. Along the upper 200 cm, sulfate-reducing populations appeared quite uniform and were dominated by the Deltaproteobacteria. In the layers beneath, an apparent increase in diversity and a shift to the Firmicutes as the predominant group was observed.  相似文献   

7.
The decay of the macroalga Ulva lactuca was followed for 54 days in a controlled laboratory experiment. The experiment focused on the activity of sulfate reducers in different compartments (water, thalli and sediment) of the experimental system. In addition to sulfate reduction, the concentrations of sulfide, carbon dioxide, sulfate, carboxylic acids and pH were determined at regular intervals. Interestingly, 90% of the system-integrated sulfate reduction was carried out in the water column by thallus-associated sulfate reducers. The sediment accounted for about 10% of the integrated sulfate reduction activity, while sulfate reduction carried out by free-living sulfate reducers was insignificant and represented less than 1% of total sulfate reduction. Sulfate reduction rates in the water column were below the detection limit at the beginning of the experiment and were detected after 1 week of incubation. Sulfate reduction rates associated with thalli were measurable immediately after the experiment was started and increased very rapidly, reaching extremely high rates after 1 week of incubation. Sediment sulfate reduction rates had increased to twice the initial value by day 30 after which they remained constant. Thallus-associated sulfate reduction rates (SRR) were of the same level in all layers of the algal mat throughout the experiment. Our results indicate that sulfate-reducing bacteria were present on the thalli when the experiment was initiated and that the water column colonization by sulfate-reducing bacteria from the sediment was less important. This would explain the rapid accumulation of hydrogen sulfide in the water column during macroalgal decay events in coastal marine environments.  相似文献   

8.
The competition between sulfate-reducing and methanogenic bacteria for hydrogen was investigated in eutrophic lake sediments that contained low in situ sulfate concentrations and in sulfate-amended sediments. Sulfate reduction and methane production coexisted in situ in lake surface sediments (0 to 2 cm), but methane production was the dominant terminal process. Addition of 10 to 20 mM sulfate to sediments resulted in a decrease in the hydrogen partial pressure and a concomitant inhibition of methane production over time. Molybdate inhibition of sulfate reduction in sulfate-amended sediments was followed by an increase in the hydrogen partial pressure and the methane production rate to values comparable to those in sediments not amended with sulfate. The sulfate reducer population had a half-saturation constant for hydrogen uptake of 141 pascals versus 597 pascals for the methanogen population. Thus, when sulfate was not limiting, the lower half-saturation constant of sulfate reducers enabled them to inhibit methane production by lowering the hydrogen partial pressure below levels that methanogens could effectively utilize. However, methanogens coexisted with sulfate reducers in the presence of sulfate, and the outcome of competition at any time was a function of the rate of hydrogen production, the relative population sizes, and sulfate availability.  相似文献   

9.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5 degrees C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-(14)C]acetate to sediment samples resulted in the passage of label mainly to CO(2). Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm(-3) h(-1) compared to 2.5 to 6 nmol cm(-3) h(-1)), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H(2) (2.4-fold), and H(2) uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H(2) release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, approximately 0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H(2) and CO(2) where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 degrees C.  相似文献   

10.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quaternary amines and all other substrates examined. Incubation of exogenous trimethylamine, choline, or glycine betaine with either bromoethane sulfonic acid or sodium molybdate was used to establish pathways of degradation of the substrates. Methanogenesis dominated the metabolism of trimethylamine, although limited nonmethanogenic activity, perhaps by sulfate-reducing bacteria, was observed. Acetate was oxidized primarily by sulfate reducers. Both choline and glycine betaine were fermented stoichiometrically to acetate and trimethylamine; apparently, neither substrate could be utilized directly by methanogens or sulfate reducers, and the activities of fermenters, methanogens, and sulfate reducers were all required to effect complete mineralization. These observations support the hypothesis that the presence of quaternary amines can mediate the coexistence of sulfate reduction and methanogenesis in marine surface sediments; they also implicate methanogens in the nitrogen cycle of marine sediments containing quaternary amines.  相似文献   

11.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 micromol/dm(3) day(-1)) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na(+)), using H(2) or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 10(8) cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.  相似文献   

12.
Previous studies have demonstrated that naphthalene and other polycyclic aromatic hydrocarbons (PAHs) can be anaerobically oxidized with the reduction of sulfate in PAH-contaminated marine harbor sediments, including those in San Diego Bay. In order to learn more about the microorganisms that might be involved in anaerobic naphthalene degradation, the microorganisms associated with naphthalene degradation in San Diego Bay sediments were evaluated. A dilution-to-extinction enrichment culture strategy, designed to recover the most numerous culturable naphthalene-degrading sulfate reducers, resulted in the enrichment of microorganisms with 16S rDNA sequences in the d-Proteobacteria, which were closely related to a previously described pure culture of a naphthalene-degrading sulfate reducer, NaphS2, isolated from sediments in Germany. A more traditional enrichment culture approach, expected to enrich for the fastest-growing naphthalene-degrading sulfate reducers, yielded 16S rDNA sequences closely related to those found in the dilution-to-extinction enrichments and NaphS2. Analysis of 16S rDNA sequences in sediments from two sites in San Diego Bay that had been adapted for rapid naphthalene degradation by continual amendment with low levels of naphthalene suggested that the microbial community composition in the amended sediments differed from that present in the unamended sediments from the same sites. Most significantly, 6-8% of the sequences recovered from 100 clones of each of the naphthalene-amended sediments were closely related to the 16S rDNA sequences in the enrichment cultures as well as the sequence of the pure culture, NaphS2. No sequences in this NaphS2 phylotype were recovered from the sediments that were not continually exposed to naphthalene. A PCR primer, which was designed based on these phylotype sequences, was used to amplify additional 16S rDNA sequences belonging to the NaphS2 phylotype from PAH-degrading sediments from Island End River (Boston), MA, and Liepaja Harbor, Latvia. Closely related sequences were also recovered from highly contaminated sediment from Tampa Bay, FL. These results suggest that microorganisms closely related to NaphS2 might be involved in naphthalene degradation in harbor sediments. This finding contrasts with the frequent observation that the environmentally relevant microorganisms cannot be readily recovered in pure culture and suggests that further study of the physiology of NaphS2 may provide insights into factors controlling the rate and extent of naphthalene degradation in marine harbor sediments.  相似文献   

13.
The relative importance of methanogenesis and sulfate reduction in freshwater sediment supplemented with acetate was investigated. Addition of acetate stimulated both methane formation and sulfate reduction, indicating that an active aceticlastic population of methanogens and sulfate reducers was present in the sediment. Sulfate reducers were most important in the consumption of acetate. However, when sulfate reducers were inhibited, acetate was metabolised at a similar rate by methanogens. Acetate, propionate and valerate accumulated only when both processes were inhibited by the combined addition of 2-bromo-ethane sulfonate and molybdate. The relative amounts of acetate, propionate and valerate were 93, 6 and 1 mol%, respectively. These results demonstrate the role of acetate as a key intermediate in the terminal step of organic matter mineralisation in the sediment. Addition of chloroform inhibited both methanogenesis and sulfate reduction. We studied the inhibitory effect of CHCl(3) on homoacetogenic bacteria, sulfate-reducing bacteria and methanogens. The results showed that inhibition by CHCl(3) correlates with microorganisms, which operate the acetyl-CoA cleavage pathway. We propose that chloroform can be used to elucidate the role of different metabolic types of sulfate reducers to sulfate reduction in natural environments.  相似文献   

14.
Abstract The combined effects of organic matter additions and temperature on short chain fatty acid (SCFA) turnover, sulfate reduction and nutrient accumulation were examined in an organic-rich fish farm sediment. Fish food pellets, which contribute significantly to the organic matter loss from fish farms, were added to surface sediment at three loadings (2.8; 14.0; 28.0 mg ww g−1 ww sediment; equivalent to organic matter loadings measured during fish farming) and incubated for 30 days in anaerobic bags at 5°C and 15°C. SCFA accumulated to high levels (acetate up to 85 mM, propionate up to 17 mM, butyrate up to 25 mM) in sediments amended with food pellets, and sulfate reduction was stimulated up to 30 times relative to unamended sediments. Sulfate reducers appeared saturated with substrates (SCFA) even in the lowest additions. A low C/N ratio (0.4–1.8) of the major mineralization products (TCO2 and NH4+) indicated preferential nitrogen mineralization in amended sediment compared with the total particulate pool (C/N = 8.8–11.9) and added food pellets (C/N = 8.4).  相似文献   

15.
Benzene Oxidation Coupled to Sulfate Reduction   总被引:16,自引:5,他引:11       下载免费PDF全文
Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of (sup14)CO(inf2) from [(sup14)C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [(sup14)C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O(inf2), with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.  相似文献   

16.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

17.
A novel method was used to examine the microbial ecology of iron-rich wetland sediments receiving neutral-pH coal mine drainage. Gel probes inserted into the sediments allowed analysis of the distribution and activity of bacterial sulfate reduction (BSR). A mixed population of sulfate-reducing bacteria enriched from anoxic wetland sediments was immobilized in low temperature-gelling agarose held in grooved rods or probes. The probes were inserted vertically into sediments and were allowed to incubate in situ for 48 h. After their retrieval, the gels were sectioned and analyzed for residual BSR activity and were compared to in situ BSR rates and chemical porewater profiles. The depth distribution of residual BSR activity in the immobilized cell gel probes differed significantly from the BSR measured in situ. Approximately 51% of the total integrated residual sulfate reduction activity measured in the gel probes occurred between 0 and 7 cm of the upper 20 cm of sediment. In contrast, ca. 99% of the integrated in situ BSR occurred between 7- and 20-cm depth, and only 1% of the total integrated rate occurred between 0- and 7-cm depth. Lactate-enriched bacteria immobilized in the gel may have been atypical of the majority of sulfate-reducing bacteria in the sediment. Agarose-immobilized sulfate-reducing bacteria might also be able to proliferate in the otherwise inhospitable zone of iron reduction, where sulfate and labile carbon compounds for which they are usually outcompeted can diffuse freely into the gel matrix. Gel probes containing particulate iron monosulfide (FeS) indicated that FeS remained stable in sediments at depths greater than 2 to 3 cm below the sediment-water interface, consistent with the shallow penetration of oxygen into surface sediments.  相似文献   

18.
Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter(-1)). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter(-1)), intermediate (100 to 200 g liter(-1)), and high (>300 g liter(-1)) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem.  相似文献   

19.
The rates of sulfate reduction, methanogenesis, and methane loss were measured in saltmarsh sediment at monthly intervals. In addition, dissolved methane and sulfate concentrations together with pS2− and pH were determined. Methane formation from carbon dioxide, but not from acetate, was detected within the same horizon of sediment where sulfate reduction was most active. Sulfate reduction was about three orders of magnitude greater than annual methanogenesis. The two processes were not separated either spatially or temporally, but occurred within the same layer of sediment at the same time of the year. Their coexistence did not seem to be the result of sulfate-depleted microenvironments within which methanogenesis could occur, but the methanogenic bacteria persisted at very low rates of activity within the same environment as the sulfate reducers.  相似文献   

20.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号