首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.  相似文献   

2.
The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments.  相似文献   

3.
In plants, a cis-acting element, DRE/CRT, is involved in ABA-independent gene expression in response to dehydration and low-temperature stress. To understand signal transduction pathways from perception of the dehydration stress signal to gene expression, we characterized a gene family for DRE/CRT-binding proteins DREB2A and DREB2B in Arabidopsis thaliana. Northern analysis showed that both genes are induced by dehydration and high-salt stress. Organ-specific northern analysis with gene-specific probes showed that these genes are strongly induced in roots by high-salt stress and in stems and roots by dehydration stress. The DREB2A gene is located on chromosome 5, and DREB2B on chromosome 3. We screened an Arabidopsis genomic DNA library with cDNA fragments of DREB2A and DREB2B as probes, and isolated DNA fragments that contained 5-flanking regions of these genes. Sequence analysis showed that both genes are interrupted by a single intron at identical positions in their leader sequence. Several conserved sequences were found in the promoter regions of both genes. The -glucuronidase (GUS) reporter gene driven by the DREB2 promoters was induced by dehydration and high-salt stress in transgenic Arabidopsis plants.  相似文献   

4.
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.Key words: cold acclimation, dehydration, putrescine, polyamines, stress  相似文献   

5.
Molecular Intrigue Between Phototransduction and the Circadian Clock   总被引:1,自引:0,他引:1  
MILLAR  ANDREW J. 《Annals of botany》1998,81(5):581-587
  相似文献   

6.
7.
8.
9.
10.
Wan B  Lin Y  Mou T 《FEBS letters》2007,581(6):1179-1189
Ca(2+)-dependent protein kinases (CDPKs) play an essential role in plant Ca(2+)-mediated signal transduction. Twenty-nine CDPK genes have been identified in the rice genome through a complete search of genome and full-length cDNA databases. Eight of them were reported previously to be inducible by different stress stimuli. Sequence comparison revealed that all 29 CDPK genes (OsCPK1-29) contain multiple stress-responsive cis-elements in the promoter region (1kb) upstream of genes. Analysis of the information extracted from the Rice Expression Database indicates that 11 of the CDPK genes are regulated by chilling temperature, dehydration, salt, rice blast infection and chitin treatment. RT-PCR and RNA gel blot hybridization were performed in this study to detect the expression 19 of the CDPK genes. Twelve CDPK genes exhibited cultivar- and tissue-specific expression; four CDPK genes (OsCPK6, OsCPK13, OsCPK17 and OsCPK25) were induced by chilling temperature, dehydration and salt stresses in the rice seedlings. While OsCPK13 (OsCDPK7) was already known to be inducible by chilling temperature and high salt, this is the first report that the other three genes are stress-regulated. OsCPK6 and OsCPK25 are up-regulated by dehydration and heat shock, respectively, while OsCPK17 is down-regulated by chilling temperature, dehydration and high salt stresses. Based on this evidence, rice CDPK genes may be important components in the signal transduction pathways for stress responses. Findings from this research are important for further dissecting mechanisms of stress response and functions of CDPK genes in rice.  相似文献   

11.
The effect of mechanical stress (centrifugation) on the inductionof nitric oxide (NO) formation and DNA fragmentation was investigatedin leaf cells of Arabidopsis thaliana. Centrifuged and non-centrifugedleaves from wild-type and nitrate reductase (NR)nia1, nia2 doublemutant, defective in the assimilation of nitrate, were labelledwith 4,5-diaminofluorescein diacetate (DAF-2 DA) to visualizein vivo NO production. After these treatments, DNA fragmentationwas detected by the terminal deoxynucleotidyl transferase-mediateddUTP nick end in situ labelling (TUNEL) method. Exposure toan NO-releasing compound, sodium nitroprusside (SNP) mimickedthe cell response to centrifugation (20 g). The involvementof endogenous NO as a signal in mechanical stress and in DNAfragmentation was confirmed by inhibition of NO production usinga nitric oxide synthase (NOS) inhibitor viz. NG-monomethyl-L -arginine (L -NMMA). These results indicate that NOS-likeactivity was present in A. thaliana leaves and was increasedby mechanical stress. The effect of leaf-wounding on nitricoxide production was identical to that of centrifugation. Experimentswith A. thaliana NR mutant also showed that NO bursts were inducedby mechanical and wounding stresses and that NO was not a by-productof NR activity. A positive and significant correlation betweenNO production and DNA fragmentation was recorded for both centrifugedand non-centrifuged cells. Our results suggest that factorsother than NO contribute to DNA damage and cell death, and furthermore,that an inducible form of NOS is present in A. thaliana. Copyright2001 Annals of Botany Company Arabidopsis thaliana, cell death, DNA fragmentation, NO, plant stress, wounding  相似文献   

12.
The expression of the maize polyubiquitin gene promoter UBI1 in rice cells has been used to study the involvement of ubiquitin in cell protection responses to dehydration caused by osmotic, saline or freezing stress. The effect of these stresses on UBI1 activity was investigated by the use of stably transformed rice calli (UBI1:GUS), as well as by transient expression experiments performed with cell lines with high or low tolerance to each type of stress. The theoretical analysis of the UBI1 promoter shows several putative stress-regulated boxes that could account for the stress-related UBI1 induction pattern described in this work. We suggest that the study of the differential UBI1 promoter-driven expression in rice cell lines with different level of tolerance to stress might be useful to elucidate complex signal transduction pathways in response to dehydration stresses in monocots.  相似文献   

13.
A detailed procedure for high throughput genetic screening of hormone and environmental stress signal transduction mutants of Arabidopsis thaliana is described. The screen was carried out with mutagenized plants expressing the firefly luciferase reporter under control of a cold, osmotic stress, and absciscic acid responsive promoter. A thermoelectrically cooled CCD camera was used to detect luminescence emitted by the plants in response to stresses or ABA. Advantages of the screening procedure include high throughput, capability to identify low as well as high expression mutants and employment of a highly sensitive but affordable imaging system and software. This procedure can be used to study complex signal transduction networks in higher plants.  相似文献   

14.
The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.  相似文献   

15.
16.
17.
18.
19.
To uncover new pathways involved in low-temperature signal transduction, we screened for mutants altered in cold-induced expression of RCI2A, an Arabidopsis gene that is not a member of the CBF/DREB1 regulon and is induced not only by low temperature but also by abscisic acid (ABA), dehydration (DH) and NaCl. This was accomplished by generating a line of Arabidopsis carrying a transgene consisting of the RCI2A promoter fused to the firefly luciferase coding sequence. A number of mutants showing low or high RCI2A expression in response to low temperature were identified. These mutants also displayed deregulated RCI2A expression in response to ABA, DH or NaCl. Interestingly, however, they were not altered in stress-induced expression of RD29A, a CBF/DREB1-target gene, suggesting that the mutations affect signaling intermediates of CBF/DREB1-independent regulatory pathways. Several mutants showed alterations in their tolerance to freezing, DH or salt stress, as well as in their ABA sensitivity, which indicates that the signaling intermediates defined by the corresponding mutations play an important role in Arabidopsis tolerance to abiotic stresses. Based on the mutants identified, we discuss the involvement of CBF/DREB1-independent pathways in modulating stress signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号