首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.  相似文献   

2.
The fundamental physiological function of native cellular prion (PrPC) remains unknown. Herein, the most salient observations as regards prion physiology are critically evaluated. These include: (i) the role of PrPC in copper homeostasis, particularly at the pre-synaptic membrane; (ii) involvement of PrPC in neuronal calcium disturbances; and (iii) the neuroprotective properties of PrPC in response to copper and oxidative stress. Ultimately, a tentative hypothesis of basic prion function is derived, namely that PrPC acts as a sensor for copper and/or free radical stimuli, thereby triggering intracellular calcium signals that finally translate into modulation of synaptic transmission and maintenance of neuronal integrity.  相似文献   

3.
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.  相似文献   

4.
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.  相似文献   

5.
Klewpatinond M  Viles JH 《FEBS letters》2007,581(7):1430-1434
A natively unfolded region of the prion protein, PrP(90-126) binds Cu(2+) ions and is vital for prion propagation. Pentapeptides, acyl-GGGTH(92-96) and acyl-TNMKH(107-111), represent the minimum motif for this Cu(2+) binding region. EPR and (1)H NMR suggests that the coordination geometry for the two binding sites is very similar. However, the visible CD spectra of the two sites are very different, producing almost mirror image spectra. We have used a series of analogues of the pentapeptides containing His(96) and His(111) to rationalise these differences in the visible CD spectra. Using simple histidine-containing tri-peptides we have formulated a set of empirical rules that can predict the appearance of Cu(2+) visible CD spectra involving histidine and amide main-chain coordination.  相似文献   

6.
The cellular prion protein (PrPC) is a Cu2+ binding protein connected to the outer cell membrane. The molecular features of the Cu2+ binding sites have been investigated and characterized by spectroscopic experiments on PrPC-derived peptides and the recombinant human full-length PrPC (hPrP-[23-231]). The hPrP-[23-231] was loaded with 63Cu under slightly acidic (pH 6.0) or neutral conditions. The PrPC/Cu2+-complexes were investigated by extended X-ray absorption fine structure (EXAFS), electron paramagnetic resonance (EPR), and electron nuclear double resonance (ENDOR). For comparison, peptides from the copper-binding octarepeat domain were investigated in different environments. Molecular mechanics computations were used to select sterically possible peptide/Cu2+ structures. The simulated EPR, ENDOR, and EXAFS spectra of these structures were compared with our experimental data. For a stoichiometry of two octarepeats per copper the resulting model has a square planar four nitrogen Cu2+ coordination. Two nitrogens belong to imidazole rings of histidine residues. Further ligands are two deprotonated backbone amide nitrogens of the adjacent glycine residues and an axial oxygen of a water molecule. Our complex model differs significantly from those previously obtained for shorter peptides. Sequence context, buffer conditions and stoichiometry of copper show marked influence on the configuration of copper binding to PrPC. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The major limitation of nuclear magnetic resonance spectroscopy arises from the increase of nuclear transverse relaxation rates with increasing molecular mass. This causes reduction in spectral resolution and coherence transfer efficiency. The use of 2H-labeling to eliminate 1H-mediated relaxation pathways and the constructive use of cross correlation effects (TROSY, CRINEPT) alleviate the phenomenon. An alternative approach is to use direct detection of heteronuclei. Specifically designed 13C direct detection experiments can complement the set of 1H-based NMR experiments commonly used for structure determination providing an additional source of information less affected by the detrimental transverse relaxation effect. We applied this novel methodology to the study of the CutA1 protein (12.3 kDa) from E. coli that forms a homotrimer in solution with a total molecular mass of 37 kDa. In this work we demonstrate that the information available from 13C direct detection experiments makes it possible to completely assign the NMR resonances of the backbone of this 37 kDa trimeric protein without the need of deuteration. The structural and dynamical knowledge obtained for this system may contribute to understand its biological role.  相似文献   

8.
Previous neurophysiological studies on prion protein deficient (Prnp(-/-)) mice have revealed a significant reduction of slow afterhyperpolarization currents (sI(AHP)) in hippocampal CA1 pyramidal cells. Here we aim to determine whether loss of PrP(C.) directly affects the potassium channels underlying sI(AHP) or if sI(AHP) is indirectly disturbed by altered intracellular Ca(2+) fluxes. Patch-clamp measurements and confocal Ca(2+) imaging in acute hippocampal slice preparations of Prnp(-/-) mice compared to littermate control mice revealed a reduced Ca(2+) rise in CA1 neurons lacking PrP(C) following a depolarization protocol known to induce sI(AHP). Moreover, we observed a reduced Ca(2+) influx via l-type voltage gated calcium channels (VGCCs). No differences were observed in the protein expression of the pore forming alpha1 subunit of VGCCs Prnp(-/-) mice. Surprisingly, the beta2 subunit, critically involved in the transport of the alpha1 subunit to the plasma membrane, was found to be up-regulated in knock out hippocampal tissue. On mRNA level however, no differences could be detected for the alpha1C, D and beta2-4 subunits. In conclusion our data support the notion that lack of PrP(C.) does not directly affect the potassium channels underlying sI(AHP), but modulates these channels due to its effect on the intracellular free Ca(2+) concentration via a reduced Ca(2+) influx through l-type VGCCs.  相似文献   

9.
The binding ability of a protein with a metal binding tag towards Ni(2+) was investigated by longitudinal paramagnetic NMR relaxation, and the possibility of obtaining long-range structure information from the paramagnetic relaxation was explored. A protein with a well-defined solution structure (Escherichia coli thioredoxin) was used as the model system, and the peptide His-His-Pro (HHP) fused to the N-terminus of the protein was used as the metal binding tag. It was found that the tag forms a stable dimer complex with the paramagnetic Ni(2+) ion, where each metal ion binds two HHP-tagged protein molecules. However, it was also found that additional sites in the protein compete with the HHP-tag for the binding of the metal ion. These binding sites were identified as the side chain carboxylate groups of the aspartic and glutamic acid residues. Yet, the carboxylate groups bind the Ni(2+) ions considerably weaker than the HHP-tag, and only protons spatially close to the carboxylate sites are affected by the Ni(2+) ions bound to these groups. As for the protons that are unaffected by the carboxylate-bound Ni(2+) ions, it was found that the long-range distances derived from the paramagnetic relaxation enhancements are in good agreement with the solution structure of thioredoxin. Specifically, the obtained long-range paramagnetic distance constraints revealed that the dimer complex is asymmetric with different orientations of the two protein molecules relative to the Ni(2+) ion.  相似文献   

10.
Summary The nucleocapsid protein of Moloney murine leukemia virus (NCp10) is a 56-amino acid protein which contains one zinc finger of the CysX2CysX4HisX4Cys form, a highly conserved motif present in most retroviruses and retroelements. At pH5, NCp10 binds one zinc atom and the complexation induces a folding of the CysX2CysX4HisX4Cys box, similar to that observed for the zinc-binding domains of HIV-1 NC protein. The three-dimensional structure of NCp10 has been determined in aqueous solution by 600 MHz 1H NMR spectroscopy. The proton resonances could be almost completely assigned by means of phase-sensitive double-quantum-filtered COSY, TOCSY and NOESY techniques. NOESY spectra yielded 597 relevant structural constraints, which were used as input for distance geometry calculations with DIANA. Further refinement was performed by minimization with the program AMBER, which was modified by introducing a zinc force field. The solution structure is characterized by a well-defined central zinc finger (rmsd of 0.747±0.209 Å for backbone atoms and 1.709±0.187 Å when all atoms are considered), surrounded by flexible N- and C-terminal domains. The Tyr28, Trp35, Lys37, Lys41 and Lys42 residues, which are essential for activity, lie on the same face of the zinc finger, forming a bulge structure probably involved in viral RNA binding. The significance of these structural characteristics for the various biological functions of the protein is discussed, taking into account the results obtained with various mutants.  相似文献   

11.
The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.  相似文献   

12.
To elucidate the specific mode and site of binding between metal ions and prion protein (PrPc), we synthesized the pentapeptide Ac184-188NH2 (AcIKQHTNH2), corresponding to helical region II of the protein, and its analogous acetylated at the lysine side chain. The acid-base properties of both peptides and their interaction with Cd2+ were studied in aqueous solution by NMR and potentiometry. Speciation data were compared with those achieved for Cd2+/4-methylimidazole, taken as the reference system. Both NMR and potentiometric data indicate that Cd2+ is coordinated by the histidine residue. The involvement of the side chain amine of lysine in the metal coordination is excluded by NMR data, whereas a role for either the carbonyl or the amide group of threonine is suggested.  相似文献   

13.
A new calculation method to determine microscopic protonation processes from CD spectra measured at different pH and Cu(II):ligand ratios was developed and used to give the relative binding strengths for the three histidines of hsPrP(84-114), a 31-mer polypeptide modeling the N-terminal copper(II) binding region of human (homo sapiens) prion protein. Mutants of hsPrP(84-114) with two or one histidyl residues have also been synthesized and their copper(II) complexes studied by CD spectroscopy. The 1-His models were analyzed first, and the molar CD spectra for the different coordination modes on the different histidines were calculated using the general computational program PSEQUAD. These spectra were deconvoluted into the sum of Gaussian curves and used as a first parameter set to calculate the molar spectra for the different coordination modes (3N and 4N coordination) and coordination positions (His85, His96 and His111) of the 2-His peptides. The calculation method therefore does not require the direct use of CD spectra measured in the smaller peptide models. This is a significant improvement over earlier calculation methods. In the same runs, the stepwise deprotonation pK(mic) values were refined and the pH-dependent distribution of copper(II) between the two histidines was determined. The results revealed the high, but different copper(II) binding affinities of the three separate histidines in the following order: His85 < His96His111. The calculation also showed that molar CD spectra which belong to the same coordination mode and coordination position in different ligands have very similar transition energies but different intensities. For this reason, direct transfer of molar CD spectra between different ligands may be a source of error, but the pK(mic) values and the copper(II) binding preferences are transferable from the 2-His peptides to the 3-His hsPrP(84-114).  相似文献   

14.
15.
16.
17.
Ma K  Wang K 《Biopolymers》2003,70(3):297-309
Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of proline-rich proteins.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号