首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ rates of nitrate, ammoniwn and urea uptake by the phytoplanktonassemblage, and the regeneration rate of ammonium by the microbialassemblage, in Lake Biwa were measured using the nitrogen 15tracer method from 1985 to 1987. The rate of total nitrogen(sum of ammonium, nitrate and urea) uptake was in the rangeof 62–594 ng N–1 r–1 h–1. The percentagecontribution of ammonium uptake was 41–92%, that of urea4–58% and that of nitrate <1–28% of total uptake.The annual mean new production which was supported by nitrateuptake was 18% of the total production in 1986. The phytoplanktonassemblage in Lake Biwa preferentially utilized regeneratednitrogen, such as ammonium and urea, whose concentration wasmuch lower than that of nitrate throughout the observation penodwithout in summer. The in situ nitrogen uptake rate was almostsufficient to meet the nitrogen requirement of the phytoplanktonassemblage, except in midsummer when the nitrate concentrationwas below the detection limit of 0.3 µg N r–1. Inthe trophogemc layer, the rate of ammonium regeneration was66–272 ng N 1–1 h–1 Although the ambient ammoniumconcentration in the trophogenic layer was maintained at aroundthe half-saturation constant for ammonium uptake kinetics, theammomum uptake rates were always highly correlated with ammoniumregeneration rates. From the size fractionation experimentsand estimates from the literature, it was suggested that themicrobial assemblage <1 µm may have been the most importantagent responsible for the ammonium regeneration processes inthe trophogenic layer.  相似文献   

2.
Transepithelial [14C]urea fluxes were measured across cultured Madin-Darby canine kidney (MDCK) cells permanently transfected to express the urea transport protein UT-A1. The urea fluxes were typically increased from a basal rate of 2 to 10 and 25 nmol·cm–2·min–1 in the presence of vasopressin and forskolin, respectively. Flux activation consisted of a rapid-onset component of small amplitude that leveled off within 10 min and at times even decreased again, followed by a delayed, strong increase over the next 30–40 min. Forskolin activated urea transport through activation of adenylyl cyclase; dideoxyforskolin was inactive. Vasopressin activated urea transport only from the basolateral side and was blocked by OPC-31260, indicating that its action was mediated by basolateral V2 receptors. In the presence of the phosphodiesterase inhibitor IBMX, vasopressin activated as strongly as forskolin. By itself, IBMX caused a slow increase over 50 min to 5 nmol·cm–2·min–1. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 300 µM) activated urea flux only when added basolaterally. IBMX augmented the activation by basolateral 8-BrcAMP. Urea flux activation by vasopressin and forskolin were only partially blocked by the protein kinase A inhibitor H-89. Even at concentrations >10 µM, urea flux after 60 min of stimulation was reduced by <50%. The rapid-onset component appeared unaffected by the presence of H-89. These data suggest that activation of transepithelial urea transport across MDCK-UT-A1 cells by forskolin and vasopressin involves cAMP as a second messenger and that it is mediated by one or more signaling pathways separate from and in addition to protein kinase A. urea transporter; Madin-Darby canine kidney cells  相似文献   

3.
In a series of batch experiments in the dark the heterotrophicdinoflagellate Oxyrrhis marina grazed three phytoplankton prey(Phaeodactylun tricornutum, Isochrysis galbana and Dunaliellateriolecta) with equal efficiency. Growth rates of the dinoflagellateranged between 0.8 and 1.3 day–1 Maximum observed ingestionrates on a cell basis varied according to the size of the preyfrom about 50 cells flagellate–1 day–1 when D.tertiolectawas the prey to 250–350 cells fiagellate–1 day–1when the other species were eaten. However, when compared ona nitrogen basis, ingestion rates were independent of prey type.Both ingestion and growth ceased when prey cell concentrationsfell below a threshold concentration of about 105 cells ml–1.Maximum specific clearance rates were 0.8x1040ndash;5.7x104it day which is considerably lower than that found for heterotrophicdinoflagellates in oceanic waters and may explain why O.marinagenerally thrives only in productive waters. The timing of NHregeneration was linked to the C:N ratio of the prey at thestart of grazing. Regeneration efficiencies for NH4. never exceeded7%; during the exponential phase and were 45% well into thestationary phase. These results are comparable to those obtainedwith heterotrophic flagellates and demonstrate that the bioenergeticpatterns of grazing and nutrient cycling by different protozoaare very similar. Moreover, they support the notion that toachieve 90+% nutrient regeneration in the open ocean, as iscurrently believed, the microbial food loop must consist ofmultiple feeding steps. Alternatively, nutrient regenerationefficiencies may be considerably lower than 90%.  相似文献   

4.
Uptake rates for ananonium, nitrate, urea and dinitrogen byphytoplankton in Lake Okeechobee ranged from 0.58 to 1.52 µmol1–1 h–1 among four representative stations duringa short-term study period. Ammonium accounted for 53% of theuptake rates, followed by nitrate (19%), urea (16%) and dinitrogen(12%). Half-saturation constants for nitrogen (N) uptake rangedfrom 8.70 µmol 1–1 for ammonium, 2.07 iimol 1–1for urea and 2.21 µmol 1–1 for nitrate at Southstation. This study reveals spatially varying N uptake rates,particularly N fixation, within a large eutrophic lake.  相似文献   

5.
p. 383, Figure 2. The legend to Figure 2 should read: Fig. 2. Cumulative urea-N taken up as % total cellular N vs.time of incubation for T. pseudonana. Closed symbols = ureauptake; open symbols =urea uptake in the presence of NH4+. = pre-depletion ([NO2 ] in culture medium = 5.0 µg-atomNO2-N 1–1 ), • = at depletion, = post-depletion(16 h after nitrogenous nutrient could no longer be detectedin culture medium).  相似文献   

6.
Bacterial growth and losses due to bacterivory in a mesotrophic lake   总被引:3,自引:0,他引:3  
Bacterial secondary production and rates of bacterivory weredetermined from samples collected from mesotrophic Lake Arlington.Bacterial production and losses were determined by comparingthe growth of natural bacterial assemblages in the presenceof predators (unfiltered samples) to growth in the absence ofpredators (water filtered through 1.0 (im porosity filters).Growth rates of heterotrophic nanoflagellates (HNF) were estimatedfrom growth in the absence of predators (water filtered through5.0 µm porojity filters). Bacterial growth rates rangedbetween 0.002 and 0.069 h–1 and averaged 0.026 h–1.HNF grew at rates ranging between 0.003 and 0.107 h–1and averaged 0.028 h Grazing rates ranged between 0.002and 0.043 h–1, and averaged 0.018 h. The annual averagerate of bacterial biomass synthesis was 3.2 –g Clh–1 and {small tilde}69% of this production was grazed.Temporal changes in growth and grazing rates suggest a tightlycoupled predator-prey linkage in this lake. 1Present address: Hydrobiological Institute, Czech Academy ofSciences, Na sddkach 7, 370 05 teski Budjovice, Czech Republic  相似文献   

7.
Phagotrophy and NH4+ regeneration in a three-member microbial food loop   总被引:1,自引:0,他引:1  
In a series of batch experiments we compared the efficiencyof nitrogen regeneration of a two- and three-member microbialfood loop consisting of a mixed bacterial assemblage, a small(3–5 µm) heterotrophic flagellate (Paraphysomonassp.), and a large (7–12 µm) heterotrophic flagellate(Paraphysomonas imperforata). In the two-member system the nitrogenregeneration efficiency for NH4+ (Rn) was 41% and the grossgrowth efficiency (GGE) was 57% during active grazing by thesmall flagellate on bacteria. Regeneration of NH4+ continuedduring the stationary phase so that Rn was 75% after 6 daysincubation. When the larger flagellate was introduced at theend of exponential growth of the smaller grazer in the three-membersystem, initially there was rapid regrowth of bacteria, tyingup 15% of the nitrogen originally in the bacteria. The largerflagellate grazed the smaller one with a GGE of 55%. Total nitrogenregeneration efficiency through exponential growth of the largerflagellate was 73%. Because microbial food loops in naturalwaters are far more complicated and with more grazing stepsthan portrayed in this study, we would expect the bulk of nutrientswithin these systems to be recycled with little transfer tohigher trophic levels.  相似文献   

8.
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF- receptor double-knockout (p55–/–p75–/–) mice. To fully evaluate the role of TNF- in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55–/–p75–/– soleus. We observed an increase of TNF- release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF--neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF- added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55–/–p75–/– mice. Increased TNF- release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55–/–p75–/– soleus. These results indicate that TNF- regulates myogenesis and muscle regeneration as a key activator of p38. myocyte enhancer factor-2C; myogenin; p21; myosin heavy chain; Akt; tumor necrosis factor-; mitogen-activated protein kinase  相似文献   

9.
Plants of two genotypes of Lolium perenne L. cv. S23 and a L.perenne ? L. multiflorum Lam. hybrid cv. Augusta were grownin flowing solution culture. N was suppled in one treatmentat 10 mmol m–3 NO–3 throughout (HN), and in another(LN) the N supply was terminated after 10 d for 11 d. When was re-supplied both LN and HN plants were leftentire or defoliated. The two genotypes showed similar responsesto all treatments. The concentration of N in shoot dry matterdeclined from 4.4% to 2.0% and in the root from 2.8% to 1.0%over the 11 d of N deprivation, with 95% of the initially present being assimilated during this period. LN plantsassimilated 10% more of their total uptake than did HN plants. The in vitro nitrate reductase activity(NRA) was 10- to 50-fold higher in the youngest fully-expandedleaves than in roots and declined in the leaves during N deprivation.Between 2–6 d after defoliation, there was a large increasein NRA in leaves of HN (but not LN) plants. After defoliationof HN plants, net uptake from 10 mmol m–3 declined to negligible levels within 15 h, but in defoliatedLN plants it increased to levels similar to those of entireHN plants (15–20 µmol h–1 g–1 fr. wt.root) within 8 h. When was re-supplied to entire LN plants, uptake of increased to levels similar to those of entire HN plants within 2.3 h, butdid not markedly exceed that of HN plants for at least 10 h.Net uptake of by LN plants during depletion of stirred static nutrient solutions containing 1.0 mol m–3 lagged behind that by HN plants by 70–100 min, but the maximum unit absorption rate was similar for LNand HN plants (5–7 µmol h–1 g–1 fr.wt. root). The nature of the short-term demand for uptake following recovery from the stresses of defoliation andN starvation is discussed. Key words: Lolium perenne, Lolium multiflorum, N-deficiency, defoliation, nitrate uptake, nitrate reductase, N-assimilation  相似文献   

10.
Inorganic phosphorus uptake and regeneration in the OkhotskSea waters were investigated in July–August 1994 withthe use of radioisotopic techniques. The rates of PO4-P uptakeby microplankton in the upper mixed layer were between 1.5 and6.6 µg P l-1 day-1 (average 2.75) in areas of diatom dominance,and between 0.68 and 1.68 µg P l-1 day-1 (average 1.16)in areas of intense warming and summer phytoplankton minimum.The residence time of PO4-P standing stock in water at differentstations varied between 1.5 and 24 days (mean 9 days). The shareof bacterioplankton contributing to total PO4-P uptake was 50%in areas of the summer phytoplankton minimum and 20–30%in areas of diatom dominance. The PO4-P regeneration rate wasmeasured first time experimentally in the temperate sea. Itsrates varied from 0.30 to 1.65 µg P l-1 day-1. In areasof diatom dominance, it compensated with 30–60% of PO4-Puptake. In zones of summer phytoplankton minimum and in thelayers of deep chlorophyll maxima at 10–25 m depths, thePO4-P regeneration rate often exceeded its uptake. Primary phytoplanktonproduction correlated well with PO4-P uptake values in the uppermixed layer, while no correlation was found between primaryproduction and the ambient PO4-P content in water.  相似文献   

11.
The short-lived radio-isotope nitrogen-13 (half-life 10 min)was used as a tracer in studying fluxes of N in the roots ofintact barley plants. After supplying the plants with 13N-nitratefor 30 min, efflux of 13N into an unlabelled (wash) solutionwas followed under steady-state conditions for a further 10min. Tests with ion exchange resins suggested that all of the13N released during this period was in the form of nitrate. In addition to nitrate from a surface film of solution and fromthe free space of the roots, efflux from another compartmentwas detected, tentatively identified as the cytoplasmic nitratepool. In plants grown with nitrate as the only external N-source,efflux from this compartment decreased with a rate constantabout 0·17 min–1 (half-time 4 min). Adding ammoniumsulphate to the wash solution alone did not significantly affecteither the initial rate, or the rate constant, of efflux of13N from these roots. However, 13N efflux decreased more rapidly(rate constant about 0·32 min–1, half-time 2·2min) in roots grown in, and subsequently washed with, solutioncontaining ammonium nitrate. In barley plants grown with 1·5 mol m–3 nitrate,the cytoplasmic nitrate pool was estimated to contain about2% of the total nitrate in the roots, corresponding to a cytoplasmicnitrate concentration 26 mol m–3. Nitrate efflux was equivalentto almost 40% of nitrate influx in the roots of these plants. Key words: Ion transport, nitrate, ammonium, efflux analysis, compartmentation  相似文献   

12.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

13.
The contribution of heterotrophic plankton to nitrogen (N) regenerationin the water column, and its significance for the requirementsof phytoplankton, were studied at the seasonal scale in thecoastal upwelling ecosystem of A Coruña (Galicia, NWSpain). During 1995–1997, monthly measurements were takenof hydrographic conditions, dissolved nutrients, and abundanceand biomass of microplanktonic heterotrophs (bacteria, flagellatesand ciliates), phytoplankton and mesozooplankton (>200 µm).Additionally, series of experiments were conducted to quantifyN fluxes, including primary production (14C method), phytoplanktonuptake of nitrate, ammonium and urea (15N-labelling techniques),microheterotrophic regeneration of ammonium, mesozooplanktongrazing (chlorophyll gut-content method) and excretion of ammoniumby mesozooplankton. Two N budgets were built for the averagesituations of high (>100 mg C m-2 h-1) and low (<100 mgC m-2 h-1) primary production. The results revealed that phytoplanktonrelied strongly on regenerated ammonium all year round (33 and43% of total N uptake in high and low production situations,respectively). This demand for ammonium was closely matchedby regeneration rates of microplankton (0.14–0.25 mmolN m-2 h-1), whereas zooplankton contributed on average <10%to N regeneration. Likewise, zooplankton grazing had littledirect control on phytoplanktonic biomass. The results obtainedindicate that in the A Coruña upwelling system, N biomassof heterotrophic plankton is generally higher than phytoplanktonN biomass. The high rates of N regeneration measured also suggestthat a large proportion of the organic matter produced afteran upwelling pulse is recycled in the water column through themicrobial food web.  相似文献   

14.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) show the relationship between concentration in flowing nutrient solution, nitrate uptake,plant growth, and the chemical composition of roots and shoots.Rates of uptake exceeding 1 g N m–2 d–1 were maintainedat concentrations in solution down to 0•02 mg N l–1. Short-term studies confirmed that at such lowconcentrations the plants were able to maintain rates of uptakeof about 85% of maximum. Between 0•2 and 200 mg N l–1the concentration of in solution had little effect on rate of uptake or plant growth. With at 1000 and 2000 mg N l–1 there was a marked reductionin weight of the shoots and, more particularly, in the lengthand tensile strength of the roots. There were several significanttrends in mineral composition of the plants (notably in S, Ca,Mg) which were apparently correlated with increasing concentrationof in solution.  相似文献   

15.
Trophic interactions within the plankton of the lowland RiverMeuse (Belgium) were measured in spring and summer 2001. Consumptionof bacteria by protozoa was measured by monitoring the disappearanceof 3H-thymidine-labelled bacteria. Metazooplankton bacterivorywas assessed using 0.5-µm fluorescent microparticles (FMPs),and predation of metazooplankton on ciliates was measured usingnatural ciliate assemblages labelled with FMPs as tracer food.Grazing of metazooplankton on flagellates was determined throughin situ incubations with manipulated metazooplankton densities.Protozooplankton bacterivory varied between 6.08 and 53.90 mgC m–3 day–1 (i.e. from 0.12 to 0.86 g C–1bacteria g C–1 protozoa day–1). Metazooplankton,essentially rotifers, grazing on bacteria was negligible comparedwith grazing by protozoa (1000 times lower). Predation of rotiferson heterotrophic flagellates (HFs) was generally low (on average1.77 mg C m–3 day–1, i.e. 0.084 g C–1 flagellatesg C–1 rotifers day–1), the higher contribution ofHF in the diet of rotifers being observed when Keratella cochleariswas the dominant metazooplankter. Predation of rotifers on ciliateswas low in spring samples (0.56 mg C m–3 day–1,i.e. 0.014 g C–1 ciliates g C–1 rotifers day–1)in contrast to measurements performed in July (8.72 mg C m–3day–1, i.e. 0.242 g C–1 ciliates g C–1 rotifersday–1). The proportion of protozoa in the diet of rotiferswas low compared with that of phytoplankton (<30% of totalcarbon ingestion) except when phytoplankton biomass decreasedbelow the incipient limiting level (ILL) of the main metazooplantonicspecies. In such conditions, protozoa (mainly ciliates) constituted50% of total rotifer diet. These results give evidence thatmicrobial organisms play a significant role within the planktonicfood web of a eutrophic lowland river, ciliates providing analternative food for metazooplankton when phytoplankton becomesscarce.  相似文献   

16.
All three races of Neotricula aperta, an epilithic, schistosometransmitting, snail of the Mekong and Mul rivers of NortheastThailand and southern Laos, were found to take up acetate froma dilute solution. After 48 h incubation the mean specific netuptake rates (µmol–1 g–1 h–1), from750 µM acetate, were: 1.86, -race; 1.39, ß-raceand 3.25, y-race. Over 48 h the snails were able to achievereductions in the ambient acetate concentration of up to 60%.Incubations under bacteriostatis suggested that bacteria arenot involved in the uptake of acetate by N. aperta. The uptakecharacteristics conform to the Michaelis-Menten model. The transportconstants, Jmax (µmol–1 g–1 h–1) andKt (µM) were 1.10 and 102 respectively (-race). Racialdifferences in uptake characteristics are discussed in relationto micro-habitat differences. HPLC indicated concentrations of acetate in y-N. aperta microhabitatsof around 325 µM. This suggests a pool size sufficientto satisfy only 6% of the snail's basal metabolic rate (BMR).Levels within the epilithic aufwuchs, however, are probablyhigh enough to provide for more than 50% of the BMR. The possible role of acetate in the energy metabolism of N.aperta is discussed. Short-chain carboxylic acids (such as acetate),arising from the decomposition of the aufwuchs, could representsources of fermentable organics that may be taken up by N. apertasnails and used to supplement their nutrition during times offood shortage. However, further investigations involving 14C-labellingtechniques are required. The findings of this investigationhave implications for the chemical ecology and life-cycle ofN. aperta. (Received 16 June 1994; accepted 28 July 1994)  相似文献   

17.
We estimated rates of heterotrophic bacterial and phytoplanktonuptake of nitrate, ammonium, and urea using 15N-labelled nitrogenand specific metabolic inhibitors of prokaryote and eukaryotenitrogen metabolism in the surface waters of the North Water(northern Baffin Bay) during autumn that were characterizedby the absence of cyanobacteria (comprising prochlorophytes).The percentage of nitrate + ammonium uptake by heterotrophicbacteria ranged between 44 and 78% of the measured total uptakeand was the highest when the phytoplankton biomass was relativelylow (<2 µg Chlorophyll a L–1). Phytoplanktonaccounted for a larger fraction (e.g., 58–95%) of ureauptake than heterotrophic bacteria. When our results are combinedwith those from previous studies carried out in diverse temperateand polar areas, it appears that heterotrophic bacteria accountfor 25% (14–40%; median and interquartile range) of thetotal nitrate uptake in surface waters with chlorophyll biomass<2 µg L–1. Estimates of new production computedfrom phytoplankton carbon uptake and f-ratios may be stronglyoverestimated in regions where nitrate uptake by heterotrophicbacteria is high and the biomass of phytoplankton is low.  相似文献   

18.
Diel vertical studies of zooplankton community filtration rates(CFR) were undertaken in situ over two annual cycles in a shelteredbay of Lake le Roux, a large silt-laden oligotrophic reservoirin the arid subtropics of South Africa. The grazer communitywas dominated by a copepod, Meradiaptomus meridianus, whileDaphnia gibba. D. barbara and Moina brachiara accounted forthe balance. Spot estimates of CFR varied from 0.1 to 75% d–1( = 12.2) in the upper 10 m, while depth-integrated values ranged seasonally from 0.1 to 15% d–1 ( = 7.4). Most variation in CFR was attributable toseasonal changes in grazer biomass (0–408, = 58.2 µg 1–1 or 3–1000, 360 mg m–2 dry wt), and temperature (12–22C). Thesevariables are used to construct multiple linear regression modelsfor the prediction of CFR in this system. Some higher CFR values(up to 260% d–1 were measured in wanner (up to 26.5C)surface waters with an unusually rich zooplankion (786 rg 1–1).No significant did vertical changes in CFR or grazer biomasswere observed. Both variables declined sharply with depth. Inorganicturbidity dominated the seston, and algal carbon probably accountedon average for less than about 20% of the total POC available.The feeding responses of this turbid-water community were generallyconsistent with observations made on other assemblages, apartfrom seemingly high specific filtration rates which, atypically,were inversely related to temperature.  相似文献   

19.
MATHUR  JAIDEEP 《Annals of botany》1992,70(5):419-422
Callus cultures of Nardostachys jatamansi DC. maintained onMurashige and Skoog's medium containing 3.0 mg 1–1 of-naphthaleneacetic acid and 0.25 mg 1–1 of kinetin whenshifted to medium containing 0.25–1.0 mg 1–1 ofindole-3-acetic acid or indole-3-butync acid showed profuserhizogenesis. The callus-regenerated roots when transferredto medium containing 2.0–6.0 mg 1–1 of kinetin producedshoot buds. The de novo shoot bud regeneration took place eitherdirectly from cortical cells or from the inner stelar region.In addition, direct, concomitant root-shoot development wasalso observed. Nardostachys jatamansi, organogenesis, root-buds  相似文献   

20.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号