首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-2D]glucose (Brooks et al. J. Appl. Physiol. 70:919-927, 1991) and [3-13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We hypothesized that reliance on lactate as a means of energy distribution is higher after a prolonged period of acclimatization (9 wk) than it is at sea level due to a higher lactate Ra and disposal from active skeletal muscle. To evaluate this hypothesis, six Danish lowlanders (25 +/- 2 yr) were studied at rest and during 20 min of bicycle exercise at 146 W at sea level (SL) and after 9 wk of acclimatization to 5,260 m (Alt). Whole body glucose Ra was similar at SL and Alt at rest and during exercise. Lactate Ra was also similar for the two conditions at rest; however, during exercise, lactate Ra was substantially lower at SL (65 micro mol. min(-1). kg body wt(-1)) than it was at Alt (150 micro mol. min(-1). kg body wt(-1)) at the same exercise intensity. During exercise, net lactate release was approximately 6-fold at Alt compared with SL, and related to this, tracer-calculated leg lactate uptake and release were both 3- or 4-fold higher at Alt compared with SL. The contribution of the two legs to glucose disposal was similar at SL and Alt; however, the contribution of the two legs to lactate Ra was significantly lower at rest and during exercise at SL (27 and 81%) than it was at Alt (45 and 123%). In conclusion, at rest and during exercise at the same absolute workload, CHO and blood glucose utilization were similar at SL and at Alt. Leg net lactate release was severalfold higher, and the contribution of leg lactate release to whole body lactate Ra was higher at Alt compared with SL. During exercise, the relative contribution of lactate oxidation to whole body CHO oxidation was substantially higher at Alt compared with SL as a result of increased uptake and subsequent oxidation of lactate by the active skeletal muscles.  相似文献   

4.
Cerebral blood flow and O2 delivery during exercise are important for well-being at altitude but have not been studied. We expected flow to increase on arrival at altitude and then to fall as O2 saturation and hemoglobin increased, thereby maintaining cerebral O2 delivery. We used Doppler ultrasound to measure internal carotid artery flow velocity at sea level and on Pikes Peak, CO (4,300 m). In an initial study (1987, n = 7 men) done to determine the effect of brief (5-min) exercises of increasing intensity, we found at sea level that velocity [24.8 +/- 1.4 (SE) cm/s rest] increased by 15 +/- 7, 30 +/- 6, and 22 +/- 8% for cycle exercises at 33, 71, and 96% of maximal O2 uptake, respectively. During acute hypobaric hypoxia in a decompression chamber (inspired PO2 = 83 Torr), velocity (23.2 +/- 1.4 cm/s rest) increased by 33 +/- 6, 20 +/- 5, and 17 +/- 9% for exercises at 45, 72, and 98% of maximal O2 uptake, respectively. After 18 days on Pikes Peak (inspired PO2 = 87 Torr), velocity (26.6 +/- 1.5 cm/s rest) did not increase with exercise. A subsequent study (1988, n = 7 men) of the effect of prolonged exercise (45 min at approximately 100 W) found at sea level that velocity (24.8 +/- 1.7 cm/s rest) increased by 22 +/- 6, 13 +/- 5, 17 +/- 4, and 12 +/- 3% at 5, 15, 30, and 45 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
7.
Women at altitude: carbohydrate utilization during exercise at 4,300 m.   总被引:4,自引:0,他引:4  
To evaluate the hypothesis that exposure to high altitude would reduce blood glucose and total carbohydrate utilization relative to sea level (SL), 16 young women were studied over four 12-day periods: at 50% of peak O(2) consumption in different menstrual cycle phases (SL-50), at 65% of peak O(2) consumption at SL (SL-65), and at 4,300 m (HA). After 10 days in each condition, blood glucose rate of disappearance (R(d)) and respiratory exchange ratio were measured at rest and during 45 min of exercise. Glucose R(d) during exercise at HA (4.71 +/- 0.30 mg. kg(-1). min(-1)) was not different from SL exercise at the same absolute intensity (SL-50 = 5.03 mg. kg(-1). min(-1)) but was lower at the same relative intensity (SL-65 = 6.22 mg. kg(-1). min(-1), P < 0.01). There were no differences, however, when glucose R(d) was corrected for energy expended (kcal/min) during exercise. Respiratory exchange ratios followed the same pattern, except carbohydrate oxidation remained lower (-23.2%, P < 0.01) at HA than at SL when corrected for energy expended. In women, unlike in men, carbohydrate utilization decreased at HA. Relative abundance of estrogen and progesterone in women may partially explain the sex differences in fuel utilization at HA, but subtle differences between menstrual cycle phases at SL had no physiologically relevant effects.  相似文献   

8.
The purpose of the present study was to investigate the blood lactate (LA-) responses to hypoventilation induced by reduced frequency breathing (RFB) during recovery from exercise. Five male subject performed 16 4 min cycling bouts alternating with 16 min rest periods. Exercise intensities were chosen at power outputs corresponding to 30% VO2max at 2 mMLA-, VO2 at 4 mMLA-, and 90% VO2max in each subject. Breathing frequency was voluntarily controlled starting 10 s before each 3rd min of exercise and maintained throughout the rest of the exercise period. Four different breathing patterns at each exercise intensity were used: normal breathing (NB), breathing every 4 s, breathing every 8 s, and maximal RFB. Except for the NB trials, subjects held their breath at functional residual capacity during each breathing interval. The concentration difference of LA- between the 3rd min sample and the 4th min sample was defined as the lactate change during exercise (delta LA-ex), and that between the 4th min sample and the sample at the 3rd min after the end of the exercise as the lactate change during recovery (delta LA-rec). An ANOVA showed significant (p less than 0.05) differences in breathing procedures only in delta LA-rec. delta LA-rec seemed to increase as compared to NB only at VO2 at 4 mMLA- and 90% VO2max, while delta LA-ex remained unchanged as compared to NB in spite of reduced VA. These results might indicate that RFB inhibited lactate removal from working muscles during exercise.  相似文献   

9.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

10.
11.
Investigations using nonsteady-state and fatiguing exercise protocols have demonstrated a strong relationship between ammonia and lactate metabolism and have suggested a cause and effect relationship between these two variables. We investigated the lactate-ammonia response using prolonged exercise and inspiration of hyperoxic gas (60% O2-40% N2). The exercise consisted of either 70-75% maximal O2 uptake (VO2 max) for 40 min (series 1, n = 6) or 75-80% VO2max for 30 min (series 2, n = 6) with the subjects inspiring room air on one occasion and hyperoxia in the other test. In both series blood ammonia rose continuously throughout the exercise regardless of the inspired gas treatment; in contrast blood lactate did not increase after 10 min with room air, and with hyperoxia blood lactate was reduced. Muscle lactate and ammonia (series 2; vastus lateralis) had responses similar to the blood data. The data demonstrated no apparent lactate-ammonia relationship with prolonged exercise or in response to hyperoxia, suggesting that ammonia production can be independent of lactate metabolism. The data also suggest that type I fibers can be a major source of ammonia in humans.  相似文献   

12.
Because the ovarian steroid hormones, progesterone and estrogen, have higher blood levels in the luteal (L) than in the follicular (F) phase of the menstrual cycle, and because of their known effects on ventilation and hematopoiesis, we hypothesized that less hypoxemia and less erythropoiesis would occur in the L than the F phase of the cycle after arrival at altitude. We examined erythropoiesis with menstrual cycle phase in 16 women (age 22.6 +/- 0.6 yr). At sea level, 11 of 16 women were studied during both menstrual cycle phases, and, where comparison within women was available, cycle phase did not alter erythropoietin (n = 5), reticulocyte count (n = 10), and red cell volume (n = 9). When all 16 women were taken for 11 days to 4,300-m altitude (barometric pressure = 462 mmHg), paired comparisons within women showed no differences in ovarian hormone concentrations at sea level vs. altitude on menstrual cycle day 3 or 10 for either the F (n = 11) or the L (n = 5) phase groups. Arterial oxygen saturation did not differ between the F and L groups at altitude. There were no differences by cycle phase on day 11 at 4,300 m for erythropoietin [22.9 +/- 4.7 (L) vs. 18.8 +/- 3.4 mU/ml (F)], percent reticulocytes [1.9 +/- 0.1 (L) vs. 2.1 +/- 0.3% (F)], hemoglobin [13.5 +/- 0.3 (L) vs. 13.7 +/- 0.3 g/100 ml (F)], percent hematocrit [40.6 +/- 1.4 (L) vs. 40.7 +/- 1.0% (F)], red cell volume [31.1 +/- 3.6 (L) vs. 33.0 +/- 1.6 ml/kg (F)], and blood ferritin [8.9 +/- 1.7 (L) vs. 10.2 +/- 0.9 microg/l (F)]. Blood level of erythropoietin was related (r = 0.77) to arterial oxygen saturation but not to the levels of progesterone or estradiol. We conclude that erythropoiesis was not altered by menstrual cycle phase during the first days at 4,300-m altitude.  相似文献   

13.
Infusion of the antioxidant N-acetylcysteine (NAC) reduces fatigability in electrically evoked human muscle contraction, but due to reported adverse reactions, no studies have investigated NAC infusion effects during voluntary exercise in humans. We investigated whether a modified NAC-infusion protocol (125 mg. kg(-1). h(-1) for 15 min, then 25 mg. kg(-1). h(-1)) altered blood redox status and enhanced performance during intense, intermittent exercise. Eight untrained men participated in a counterbalanced, double-blind, crossover study in which they received NAC or saline (control) before and during cycling exercise, which comprised three 45-s bouts and a fourth bout that continued to fatigue, at 130% peak oxygen consumption. Arterialized venous blood was analyzed for glutathione status, hematology, and plasma electrolytes. NAC infusion induced no severe adverse reactions. Exercise decreased the reduced glutathione (P < 0.005) and increased oxidized glutathione concentrations (P < 0.005); NAC attenuated both effects (P < 0.05). NAC increased the rise in plasma K(+) concentration-to-work ratio (P < 0.05), indicating impaired K(+) regulation, although time to fatigue was unchanged (NAC 102 +/- 45 s; saline 107 +/- 53 s). Thus NAC infusion altered blood redox status during intense, intermittent exercise but did not attenuate fatigue.  相似文献   

14.
15.
16.
A single session of exercise increases insulin sensitivity for hours and even days, and dietary carbohydrate ingested after exercise alters the magnitude and duration of this effect. Although increasing systemic fatty acid availability is associated with insulin resistance, it is uncertain whether increasing dietary fat availability after exercise alters the exercise-induced increase in insulin sensitivity. The purpose of this study was to determine whether adding fat calories to meals after exercise alters glucose tolerance the next day. Seven healthy men cycled 90 min at 66 +/- 2% peak oxygen uptake followed by a maximum of five high-intensity intervals. During the hours after exercise, subjects ingested three meals containing either low-fat (5% energy from fat) or high-fat (45% energy from fat) foods (Low-Fat and High-Fat groups, respectively). Each diet contained the same amount of carbohydrate and protein. An oral glucose tolerance test was performed the next morning. Muscle glycogen and intramuscular triglyceride (IMTG) concentrations were measured in muscle biopsy samples obtained immediately before exercise and the next morning. The day after exercise, muscle glycogen concentration was identical in High-Fat and Low-Fat (393 +/- 70 and 379 +/- 38 mmol/kg dry wt). At the same time, IMTG concentration was approximately 20% greater during High-Fat compared with Low-Fat (42.5 +/- 3.4 and 36.3 +/- 3.3 mmol/kg dry wt; P < 0.05). Despite the addition of approximately 165 g of fat to meals after exercise ( approximately 1,500 kcal) and a resultant elevation in IMTG concentration, glucose tolerance was identical in High-Fat and Low-Fat (composite index: 8.7 +/- 1.0 and 8.4 +/- 1.0). In summary, as long as meals ingested in the hours after exercise contain the same carbohydrate content, the addition of approximately 1500 kcal from fat to these meals did not alter muscle glycogen resynthesis or glucose tolerance the next day.  相似文献   

17.
Van Den Bergh, Adrianus J., Sibrand Houtman, ArendHeerschap, Nancy J. Rehrer, Hendrikus J. Van Den Boogert, BerendOeseburg, and Maria T. E. Hopman. Muscle glycogen recovery afterexercise during glucose and fructose intake monitored by13C-NMR. J. Appl.Physiol. 81(4): 1495-1500, 1996.The purpose of this study was to examine muscle glycogen recovery with glucose feeding(GF) compared with fructose feeding (FF) during the first 8 h afterpartial glycogen depletion by using13C-nuclear magneticresonance (NMR) on a clinical 1.5-T NMR system. After measurement of the glycogen concentration of the vastus lateralis (VL) muscle in seven male subjects, glycogen stores of the VLwere depleted by bicycle exercise. During 8 h after completion ofexercise, subjects were orally given either GF or FF while the glycogencontent of the VL was monitored by13C-NMR spectroscopy every secondhour. The muscular glycogen concentration was expressed as a percentageof the glycogen concentration measured before exercise. The glycogenrecovery rate during GF (4.2 ± 0.2%/h) was significantly higher(P < 0.05) compared withvalues during FF (2.2 ± 0.3%/h). This study shows that1) muscle glycogen levels areperceptible by 13C-NMRspectroscopy at 1.5 T and 2) theglycogen restoration rate is higher after GF compared with after FF.

  相似文献   

18.
The effect of heat stress on circulation in an exercising leg was determined using one-legged knee extension and two-legged bicycle exercise, both seated and upright. Subjects exercised for three successive 25-min periods wearing a water-perfused suit: control [CT, mean skin temperature (Tsk) = 35 degrees C], hot (H, Tsk = 38 degrees C), and cold (C, Tsk = 31 degrees C). During the heating period, esophageal temperature increased to a maximum of 37.91, 39.35, and 39.05 degrees C in the three types of exercise, respectively. There were no significant changes in pulmonary O2 uptake (VO2) throughout the entire exercise period with either one or two legs. Leg blood flow (LBF), measured in the femoral vein of one leg by thermodilution, remained unchanged between CT, H, and C periods. Venous plasma lactate concentration gradually declined over time, and no trend for an increased lactate release during the heating period was found. Similarly, femoral arteriovenous O2 difference and leg VO2 remained unchanged between the three exercise periods. Although cardiac output (acetylene rebreathing) was not significantly higher during H, there was a tendency for an increase of 1 and 2 l/min in one- and two-legged exercise, respectively, which could account for part of the increase in total skin blood flow during heating (gauged by changes in forearm blood flow). Because LBF was not reduced during exercise and heat stress in these experiments, the additional increase in skin blood flow must have been met by redistribution of blood away from vascular beds other than active skeletal muscle.  相似文献   

19.
Carbonic anhydrase (CA) inhibition is associated with a lower plasma lactate concentration ([La(-)](pl)), but the mechanism for this association is not known. The effect of CA inhibition on muscle high-energy phosphates [ATP and phosphocreatine (PCr)], lactate ([La(-)](m)), and glycogen was examined in seven men [28 +/- 3 (SE) yr] during cycling exercise under control (Con) and acute CA inhibition with acetazolamide (Acz; 10 mg/kg body wt iv). Subjects performed 6-min step transitions in work rate from 0 W to a work rate corresponding to approximately 50% of the difference between the O(2) uptake at the ventilatory threshold and peak O(2) uptake. Muscle biopsies were taken from the vastus lateralis at rest, at 30 min postinfusion, at end exercise (EE), and at 5 and 30 min postexercise. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for [La(-)](pl). ATP was unchanged from rest values; no difference between Con and Acz was observed. The fall in PCr from rest [72 +/- 3 and 73 +/- 3.6 (SE) mmol/kg dry wt for Con and Acz, respectively] to EE (51 +/- 4 and 46 +/- 5 mmol/kg dry wt for Con and Acz, respectively) was similar in Con and Acz. At EE, glycogen (mmol glucosyl units/kg dry wt) decreased to similar values in Con and Acz (307 +/- 16 and 300 +/- 19, respectively). At EE, no difference was observed in [La(-)](m) between conditions (46 +/- 6 and 43 +/- 5 mmol/kg dry wt for Con and Acz, respectively). EE [La(-)](pl) was higher during Con than during Acz (11.4 +/- 1.0 vs. 8.2 +/- 0.6 mmol/l). The similar [La(-)](m) but lower [La(-)](pl) suggests that the uptake of La(-) by other tissues is enhanced after CA inhibition.  相似文献   

20.
This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30 degrees C or at 10 degrees C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la-]b. The VO2 was identical under both environments. At 10 degrees C, as compared to 30 degrees C, the lactate anaerobic threshold (Than,la-) occurred at an exercise intensity 15 W higher and [la-]b was lower for submaximal intensities above the Than,la-. Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10 degrees C [15.60 (SEM 3.15) nmol.l-1] than at 30 degrees C [8.64 (SEM 2.37) nmol.l-1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la-]b observed for submaximal high intensities during severe cold exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号