共查询到20条相似文献,搜索用时 0 毫秒
1.
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved
in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of
IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized
in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells.
In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1
that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains,
IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3)
were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for
Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were
required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1.
This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. 相似文献
2.
Myungjin Kim Ian Semple Boyoung Kim Alexandra Kiers Samuel Nam Hwan-Woo Park Haeli Park Seung-Hyun Ro Jeong-Sig Kim Gábor Juhász Jun Hee Lee 《Autophagy》2015,11(8):1358-1372
Autophagy is an essential process for eliminating ubiquitinated protein aggregates and dysfunctional organelles. Defective autophagy is associated with various degenerative diseases such as Parkinson disease. Through a genetic screening in Drosophila, we identified CG11148, whose product is orthologous to GIGYF1 (GRB10-interacting GYF protein 1) and GIGYF2 in mammals, as a new autophagy regulator; we hereafter refer to this gene as Gyf. Silencing of Gyf completely suppressed the effect of Atg1-Atg13 activation in stimulating autophagic flux and inducing autophagic eye degeneration. Although Gyf silencing did not affect Atg1-induced Atg13 phosphorylation or Atg6-Pi3K59F (class III PtdIns3K)-dependent Fyve puncta formation, it inhibited formation of Atg13 puncta, suggesting that Gyf controls autophagy through regulating subcellular localization of the Atg1-Atg13 complex. Gyf silencing also inhibited Atg1-Atg13-induced formation of Atg9 puncta, which is accumulated upon active membrane trafficking into autophagosomes. Gyf-null mutants also exhibited substantial defects in developmental or starvation-induced accumulation of autophagosomes and autolysosomes in the larval fat body. Furthermore, heads and thoraxes from Gyf-null adults exhibited strongly reduced expression of autophagosome-associated Atg8a-II compared to wild-type (WT) tissues. The decrease in Atg8a-II was directly correlated with an increased accumulation of ubiquitinated proteins and dysfunctional mitochondria in neuron and muscle, which together led to severe locomotor defects and early mortality. These results suggest that Gyf-mediated autophagy regulation is important for maintaining neuromuscular homeostasis and preventing degenerative pathologies of the tissues. Since human mutations in the GIGYF2 locus were reported to be associated with a type of familial Parkinson disease, the homeostatic role of Gyf-family proteins is likely to be evolutionarily conserved. 相似文献
3.
Over the past 35 years, developmental geneticists have made impressive progress
toward an understanding of how genes specify morphology and function, particularly as
they relate to the specification of each physical component of an organism. In the
last 20 years, male courtship behavior in Drosophila melanogaster
has emerged as a robust model system for the study of genetic specification of
behavior. Courtship behavior is both complex and innate, and a single gene,
fruitless (fru), is both necessary and sufficient for all aspects of the
courtship ritual. Typically, loss of male-specific Fruitless protein function results
in male flies that perform the courtship ritual incorrectly, slowly, or not at all.
Here we describe a novel requirement for fru: we have identified a group of cells in which male Fru
proteins are required to reduce the speed of courtship initiation. In addition, we
have identified a gene, Trapped in endoderm
1 (Tre1), which is required in these cells for normal courtship
and mating behavior. Tre1 encodes a G-protein-coupled receptor required for
establishment of cell polarity and cell migration and has previously not been shown
to be involved in courtship behavior. We describe the results of feminization of the
Tre1-expressing neurons, as well as the effects on courtship
behavior of mutation of Tre1. In addition, we show that Tre1 is expressed in a sexually dimorphic pattern in the
central and peripheral nervous systems and investigate the role of the
Tre1 cells in mate identification. 相似文献
4.
We recently uncovered a novel genetic mechanism that generates the phenotypic uniformity, or canalization, of BMP signaling and cell fate specification during patterning of the dorsal-ventral (D/V) axis in D. melanogaster embryos. We went on to show that other wild-type Drosophila species lack this canalizing genetic circuitry and, consequently, have non-robust D/V patterning. In this review, we propose molecular mechanisms that may give rise to stereotyped BMP signaling, and we identify an additional species that could have decanalized D/V patterning. Extension of these analyses could in turn help explain why canalization is not a universal necessity for species survival. 相似文献
5.
Soo-Young Park Michael Z. Ludwig Natalia A. Tamarina Bin Z. He Sarah H. Carl Desiree A. Dickerson Levi Barse Bharath Arun Calvin L. Williams Cecelia M. Miles Louis H. Philipson Donald F. Steiner Graeme I. Bell Martin Kreitman 《Genetics》2014,196(2):539-555
Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINSC96Y, which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINSC96Y causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINSC96Y leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable “disease” phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance of disease-specific phenotypic variability in our model of misfolded human proinsulin makes this approach amenable to genome-wide association study in a simple F1 screen of natural variation. 相似文献
6.
Cytoplasmic Ca2+ overload is known to trigger autophagy and ER-stress. Furthermore, ER-stress and autophagy are commonly associated with degenerative pathologies, but their role in disease progression is still a matter of debate, in part, owing to limitations of existing animal model systems. The Drosophila eye is a widely used model system for studying neurodegenerative pathologies. Recently, we characterized the Drosophila protein, Calphotin, as a cytosolic immobile Ca2+ buffer, which participates in Ca2+ homeostasis in Drosophila photoreceptor cells. Exposure of calphotin hypomorph flies to continuous illumination, which induces Ca2+ influx into photoreceptor cells, resulted in severe Ca2+-dependent degeneration. Here we show that this degeneration is autophagy and ER-stress related. Our studies thus provide a new model in which genetic manipulations trigger changes in cellular Ca2+ distribution. This model constitutes a framework for further investigations into the link between cytosolic Ca2+, ER-stress and autophagy in human disorders and diseases. 相似文献
7.
Sajid W Kulahin N Schluckebier G Ribel U Henderson HR Tatar M Hansen BF Svendsen AM Kiselyov VV Nørgaard P Wahlund PO Brandt J Kohanski RA Andersen AS De Meyts P 《The Journal of biological chemistry》2011,286(1):661-673
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms. 相似文献
8.
Van Swinderen B Andretic R 《Proceedings. Biological sciences / The Royal Society》2011,278(1707):906-913
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories—each arguing for modulation of some aspect of the fly''s waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention. 相似文献
9.
10.
The recombinational environment influences patterns of molecular evolution through the effects of Hill-Robertson interference. Here, we examine genome-wide patterns of gene expression with respect to recombinational environment in Drosophila melanogaster. We find that regions of the genome lacking crossing over exhibit elevated levels of expression, and this is most pronounced for genes on the entirely non-crossing over fourth chromosome. We find no evidence for differences in the patterns of gene expression between regions of high, intermediate and low crossover frequencies. These results suggest that, in the absence of crossing over, selection to maintain control of expression may be compromised, perhaps due to the accumulation of deleterious mutations in regulatory regions. Alternatively, higher gene expression may be evolving to compensate for defective protein products or reduced translational efficiency. 相似文献
11.
Bin Z. He Michael Z. Ludwig Desiree A. Dickerson Levi Barse Bharath Arun Bjarni J. Vilhjálmsson Pengyao Jiang Soo-Young Park Natalia A. Tamarina Scott B. Selleck Patricia J. Wittkopp Graeme I. Bell Martin Kreitman 《Genetics》2014,196(2):557-567
The identification and validation of gene–gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINSC96Y) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINSC96Y background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINSC96Y-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease. 相似文献
12.
Chen P Tu X Akdemir F Chew SK Rothenfluh A Abrams JM 《Cell death and differentiation》2012,19(10):1655-1663
Heavy alcohol consumption provokes an array of degenerative pathologies but the signals that couple alcohol exposure to regulated forms of cell death are poorly understood. Using Drosophila as a model, we genetically establish that the severity of ethanol challenge dictates the type of death that occurs. In contrast to responses seen under acute exposure, cytotoxic responses to milder challenges required gene encoding components of the apoptosome, Dronc and Dark. We conducted a genome-wide RNAi screen to capture targets that specifically mediate ethanol-induced cell death. One effector, Drat, encodes a novel protein that contains an ADH domain but lacks essential residues in the catalytic site. In cultured cells and neurons in vivo, depletion of Drat conferred protection from alcohol-induced apoptosis. Adults mutated for Drat showed both improved survival and enhanced propensities toward sedation after alcohol challenge. Together, these findings highlight novel effectors that support regulated cell death incited by alcohol stress in vitro and in vivo. 相似文献
13.
Keita Miyoshi Tomohiro Miyoshi Julia Verena Hartig Haruhiko Siomi Mikiko C. Siomi 《RNA (New York, N.Y.)》2010,16(3):506-515
In Drosophila, three types of endogenous small RNAs—microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)—function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2–Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2–Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA. 相似文献
14.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells. 相似文献
15.
Timothy P. Murphy Dan D. Luu Jessica A. DeSimone Thomas C. O'Brien Christopher J. Lally Jillian J. Lindblad Sarah M. Webster 《Journal of visualized experiments : JoVE》2015,(106)
Because of the structural and functional homology to the hair cells of the mammalian inner ear, the neurons that innervate the Drosophila external sense organs provide an excellent model system for the study of mechanosensation. This protocol describes a simple touch behavior in fruit flies which can be used to identify mutations that interfere with mechanosensation. The tactile stimulation of a macrochaete bristle on the thorax of flies elicits a grooming reflex from either the first or third leg. Mutations that interfere with mechanotransduction (such as NOMPC), or with other aspects of the reflex arc, can inhibit the grooming response. A traditional screen of adult behaviors would have missed mutants that have essential roles during development. Instead, this protocol combines the touch screen with mosaic analysis with a repressible cell marker (MARCM) to allow for only limited regions of homozygous mutant cells to be generated and marked by the expression of green fluorescent protein (GFP). By testing MARCM clones for abnormal behavioral responses, it is possible to screen a collection of lethal p-element mutations to search for new genes involved in mechanosensation that would have been missed by more traditional methods. 相似文献
16.
Karen G. Hales Christopher A. Korey Amanda M. Larracuente David M. Roberts 《Genetics》2015,201(3):815-842
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. 相似文献
17.
Iwamoto H Inoue K Matsuo T Yagi N 《Proceedings. Biological sciences / The Royal Society》2007,274(1623):2297-2305
In the asynchronous flight muscles of higher insects, the lattice planes of contractile filaments are strictly preserved along the length of each myofibril, making the myofibril a millimetre-long giant single multiprotein crystal. To examine how such highly ordered structures are formed, we recorded X-ray diffraction patterns of the developing flight muscles of Drosophila pupae at various developmental stages. To evaluate the extent of long-range myofilament lattice order, end-on myofibrillar microdiffraction patterns were recorded from isolated quick-frozen dorsal longitudinal flight muscle fibres. In addition, conventional whole-thorax diffraction patterns were recorded from live pupae to assess the extent of development of flight musculature. Weak hexagonal fluctuations of scattering intensity were observed in the end-on patterns as early as approximately 15 h after myoblast fusion, and in the following 30 h, clear hexagonally arranged reflection spots became a common feature. The result suggests that the framework of the giant single-crystal structure is established in an early phase of myofibrillogenesis. Combined with published electron microscopy results, a myofibril in fused asynchronous flight muscle fibres is likely to start as a framework with fixed lattice plane orientations and fixed sarcomere numbers, to which constituent proteins are added afterwards without altering this basic configuration. 相似文献
18.
Taniguchi K Hozumi S Maeda R Ooike M Sasamura T Aigaki T Matsuno K 《Developmental biology》2007,311(1):251-263
Although bilateral animals appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in vertebrates have been extensively studied. However, how each organ develops its LR asymmetric morphology with respect to the LR axis is still unclear. Here, we showed that Drosophila Jun N-terminal kinase (D-JNK) signaling is involved in the LR asymmetric looping of the anterior-midgut (AMG) in Drosophila. Mutant embryos of puckered (puc), which encodes a D-JNK phosphatase, showed random laterality of the AMG. Directional LR looping of the AMG required D-JNK signaling to be down-regulated by puc in the trunk visceral mesoderm. Not only the down-regulation, but also the activation of D-JNK signaling was required for the LR asymmetric looping. We also found that the LR asymmetric cell rearrangement in the circular visceral muscle (CVM) was regulated by D-JNK signaling and required for the LR asymmetric looping of the AMG. Rac1, a Rho family small GTPase, augmented D-JNK signaling in this process. Our results also suggest that a basic mechanism for eliciting LR asymmetric gut looping may be conserved between vertebrates and invertebrates. 相似文献
19.
Christopher J. Reaume Marla B. Sokolowski Frederic Mery 《Proceedings. Biological sciences / The Royal Society》2011,278(1702):91-98
As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks. 相似文献
20.
Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila 下载免费PDF全文
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch. 相似文献