首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yolk formation in the oocytes of the free-living, marine copepod, Labidocera aestiva (order Calanoida) involves both autosynthetic and heterosynthetic processes. Three morphologically distinct forms of endogenous yolk are produced in the early vitellogenic stages. Type 1 yolk spheres are formed by the accumulation and fusion of dense granules within vesicular and lamellar cisternae of endoplasmic reticulum. A granular form of type 1 yolk, in which the dense granules within the cisternae of endoplasmic reticulum do not fuse, appears to be synthesized by the combined activity of endoplasmic reticulum and Golgi complexes. Type 2 yolk bodies subsequently appear in the ooplasm but their formation could not be attributed to any particular oocytic organelle. In the advanced stages of vitellogenesis, a single narrow layer of follicle cells becomes more developed and forms extensive interdigitations with the oocytes. Extra-oocytic yolk precursors appear to pass from the hemolymph into the follicle cells and subsequently into the oocytes via micropinocytosis. Pinocytotic vesicles fuse in the cortical ooplasm to form heterosynthetically derived type 3 yolk bodies.  相似文献   

2.
The sequence and timing of morphological changes during envelope formation was followed in diapause eggs of Pontella mediterranea (Crustacea, Copepoda). The multilayer coat enveloping these eggs resulted from the exocytosis of 4 types of cortical vesicles that sequentially released their contents in the perivitelline space. These included small high-density vesicles (hDV) with electron-dense material, vesicles (V) with dense ring granules and a uniform matrix contained within the same compartment, large high-density (HDV) vesicles, and large moderately dense (MDV) vesicles. All of these cortical vesicles were present in newly spawned, fertilized eggs. Their exocytosis resulted from egg activation. One of these cortical vesicles (V) was similar in morphology to the intracisternal granules precursors of endogenous yolk. Intracisternal granules, characteristic of previtellogenic oocytes of many crustaceans, were present in previtellogenic oocytes of P. mediterranea but disappeared in later stages of oocyte development once yolk formation was completed. We discuss the role of cortical vesicles in the formation of the complex extracellular coat enveloping copepod diapause eggs.  相似文献   

3.
The developmental oogenesis of gorgonian coral was investigated at the histological level. The objective of this study was to examine and improve the understanding of Junceella juncea oogenesis using ultrastructural methods, such as histological sectioning and transmission electron microscopy. At least three types of yolk materials were observed in this study: yolk body, lipid granules and cortical alveoli. Some of the complex yolk materials were encompassed by concentric or arched layers of smooth and rough endoplasmic reticulum and the Golgi complex in early stage oocytes. Different types of vesicles were found in both early and late stage oocytes and some granules could be seen inside the empty vesicles. This may be a possible method for elaborating complex yolk materials. Homogeneous yolks from different types of inclusions were abundant and the autosynthesis of yolk may be a major mechanism in J. juncea oocytes. This is the first report of the ultrastructural observation of oogenesis in gorgonian coral species using transmission electron microscopy. Our study obtained relatively detailed information at the ultrastructural level, and it provides an overview of the oocyte ultrastucture of the gorgonian coral J. juncea.  相似文献   

4.
Temereva, E.N., Malakhov, V.V. and Yushin, V.V. 2011. Ultrastructural study of oogenesis in Phoronopsis harmeri (Phoronida). —Acta Zoologica (Stockholm) 92 : 241–250. The successive stages of oogenesis in Phoronopsis harmeri were examined by electron microscopy methods. During the oogenesis, each oocyte is encircled by vasoperitoneal (coelomic) cells forming a follicle. The previtellogenic oocytes are small cells which accumulate ribosomes for future synthesis; their cytoplasm contains characteristic clusters of mitochondria and osmiophilic particles resembling a germ plasm of other metazoans. The cytoplasm of the vitellogenic oocytes includes numerous mitochondria, cisternae of the rough endoplasmic reticulum, Golgi bodies and annulate lamellae. The synthesis of three types of inclusions was observed: strongly osmiophilic granules (lipid droplets) as a prevalent component, distinctly larger granules surrounded by membrane (proteinaceous yolk) and numerous large vesicles with pale flocculent content. No inclusions which could be unequivocally interpreted as the cortical granules were detected. The surface of the vitellogenic oocytes is covered by microvilli which increase in number and length during development. The oogenesis in Phoronida may be interpreted as follicular because of close association of oocytes with the vasoperitoneal tissue. However, well‐developed synthetic apparatus together with a strongly developed microvillous surface and absence of endocytosis indicate a clear case of autosynthetic vitellogenesis. Thus, in phoronids, there is a combination of simply developed follicle and autosynthesis that, apparently, is plesiomorphic character.  相似文献   

5.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

6.
The endomembranous system of Serrasalmus spilopleura oocyte secondary growth was analysed using structural and ultrastructural cytochemical techniques. In vitellogenic oocytes, the endoplasmic reticulum components, the nuclear envelope intermembranous space, some Golgi dictiossomes, lysosomes, yolk granules, regions of the egg envelope and sites of the follicle cells react to acid phosphatase detection (AcPase). The cortical alveoli, some heterogeneous cytoplasmic structures, regions of the egg envelope, and sites of the follicle cells are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). The endoplasmic reticulum components, some vesicles, and sites of the follicle cells also react to osmium tetroxide and potassium iodide impregnation (KI). The biosynthetic pathway of lysosomal proteins, such as acid phosphatase, required for vitellogenesis, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes, and, finally, lysosomes. In S. spilopleura oocytes at secondary growth, the endomembranous system takes part in the production of the enzymes needed for vitellogenesis, and in the metabolism of yolk exogenous components (AcPase detection). The endomembranous system compartments also show reduction capacity (KI reaction) and are involved in the metabolism of proteins rich in SH‐groups (ZIO reaction).  相似文献   

7.
Oocytes from the land hermit crab, Coenobita clypeatus, in various stages of vitellogenesis were examined by light and electron microscopy. Early vitellogenic oocytes are characterized by accumulations of discrete vesicles of endoplasmic reticulum in the perinuclear cytoplasm. As oocytes develop, the endoplasmic reticulum becomes abundant, and numerous Golgi complexes are seen. There is a well developed Golgi-endoplasmic reticulum interaction. Within the confines of the reticulum are discrete intracisternal granules, which can be seen coalescing into electron-dense yolk bodies. Lipid accumulation is seen throughout the cytoplasm. Coincident with the burst of intra-oocytic metabolism are oolemma modifications and micropinocytosis, which provide ultrastructural evidence for extra-oocytic yolk production. The mature oocyte contains numerous yolk and lipid vesicles of varying electron density that comprise both intra- and extra-oocytic substrates.  相似文献   

8.
Zara, F.J., Gaeta, H.H., Costa, T.M., Toyama, M.H. and Caetano, F.H. 2011. The ovarian cycle histochemistry and its relationship with hepatopancreas weight in the blue crab Callinectes danae (Crustacea: Portunidae). —Acta Zoologica (Stockholm) 00 :1–13. Several studies use macroscopic patterns of the ovarian development in crustaceans. Here, we examined the relationship between ovary histochemistry, changes in gonadosomatic and hepatosomatic indices against the macroscopic pattern of the ovarian development in Callinectes danae. Animals were collected in the south coast of São Paulo State, Brazil. Ovaries were macroscopically classified as juvenile, rudimentary, developing, intermediary, mature, and rudimentary ovigerous. Samples were fixed in 4% paraformaldehyde, processed for historesin, and stained with HE, protein, and neutral and acid polysaccharides detection. The juvenile oocytes are not enclosed by follicular cells and have fewer yolk nuclei being less intense in PAS reactivity than rudimentary oocytes. Developing oocytes show yolk granules and thick follicular cells. Yolk granules were positive for proteins and neutral polysaccharides. The intermediary stage is marked by a qualitative increase in yolk granules and the onset of chorion formation. In mature oocytes, cytoplasm is completely filled by yolk granules and the chorion is completely formed. Ovigerous ovaries have several atretic follicles and large quantities of hemocytes in the process of tissue reorganization. In C. danae, the changes in cell, goandosomatic and hepatosomatic indices coinciding with macroscopic observations and any combination of different macroscopic stages in a single pattern should be avoided.  相似文献   

9.
Morphological changes in the growing and maturing oocytes of Patiria ( Asterina ) pectinifero were studied by electron microscopy. Oogenesis is of the solitary type. An extensive system of rough endoplasmic reticulum (ER) and Golgi complex (GC) develops in the ooplasm forming the cortical, yolk and secretory granules in its peripheral regions. The contents of the latter granules are released from the oocyte and form the vitelline membrane. At early stages of oogenesis, extensive multiplication of mitochondria results in formation of a large aggregate of these organelles in the perinuclear cytoplasm ("yolk nucleus"). After maturation of full grown oocytes has been induced by 1-methyladenine, the membranous cell structures are rapidly rearranged: vast aggregates of ER cisternae in the surface cytoplasm layer and single ER cisternae among yolk granules are disintegrated to small vesicles; the GC is reduced. These processes are suggested to be somehow related to changes in hydration of the cytoplasm and in rigidity of its surface layer. In maturing oocytes, the yolk granules form characteristic linear rows, trabeculae, traversing the cytoplasm and their boundary membranes fuse in zones of contact. Some granules are converted to multivesicular bodies, thus suggesting the activation of hydrolytic enzymes that form part of the yolk in echinoderms.  相似文献   

10.
The microscopic development of the egg of the Perth herring, Nematalosa vlaminghi , has been related to the gross changes observed in the ovary. The patterns of change in the diameter of the oocyte, oocyte nucleus, yolk vesicles and yolk granules and the thickness of the theca, granulosa and zona radiata have been quantified. Three modes were present in frequency histograms of the diameter of oocytes in sexually-mature females, two of which corresponded to opaque and hyaline yolked-oocytes. The mean number of hyaline oocytes was 20430, which represented 35% of the mean number of all yolked oocytes (57610). Seasonal trends in gonadosomatic indices, together with the changes in the macroscopic and microscopic condition of the ovaries, demonstrated that spawning activity reached a peak in December-January. The place of capture of mature animals and 0+ recruits showed that breeding occurred near the top end of the upper estuary. During the ensuing weeks, the young fish dispersed throughout the upper and middle estuary while the older fish moved out to sea.  相似文献   

11.
The present study was designed to investigate the process of acidification of yolk granules during embryogenesis. In oocytes of mature Bombyx mori silkmoth, yolk proteins and a cysteine protease (pro-form BCP) were found in yolk granules. BCP was localized in small sized yolk granules (SYG, 3-6 microm in diameter) and yolk proteins in large sized granules (LYG, 6-11 microm in diameter), which might result in a spatial separation of protease and its substrates to avoid unnecessary hydrolysis. The granules were isolated on Percoll density gradient centrifugation. Although separation of LYG and SYG was incomplete, the granules sedimented in different fractions when using unfertilized egg extract, in which LYG was recovered from heavier fractions and BCP from lighter fractions. Acid phosphatase, as well as other lysosomal marker enzymes tested, was recovered from LYG-containing fractions. When extracts were prepared from developing eggs (day 3), some BCP-containing granules co-sedimented with LYG. The inactive pro-form BCP was activated in vivo, in parallel with yolk protein degradation, and as demonstrated previously in vitro under acidic conditions (). These results suggest that acidification occurs in yolk granules during embryogenesis. This was also confirmed using acridine orange fluorescent dye. In early development, most yolk granules were neutral, but became acidic during embryonic development. SYG were progressively recovered in heavier density fractions, displaying acidic interior. In this fraction, BCP-containing granules seem to be associated with larger granules (6-11 microm in size). In addition, SYG (BCP containing granules) were likely to be acidified earlier than LYG. Our results suggest that acidification initiates yolk degradation through activation of pro-form BCP.  相似文献   

12.
Summary Comparative histochemical studies on the fish (Channa maruleus) and amphibian (Bufo stomaticus) oogenesis demonstrate a great similarity in the growth and differentiation of their egg follicle. The ooplasm, germinal vesicle and egg-membranes show distinct morphological and cytochemical changes during previtellogenesis and vitellogenesis.During previtellogenesis the various components of the follicle are engaged in the synthesis of protoplasm as shown by the proliferation of yolk nucleus substance, mitochondria and some lipid bodies in the ooplasm and of nucleoli in the germinal vesicle. The substance of the yolk nucleus consisting of proteins, lipoproteins and RNA first appears adjacent to the nuclear membrane. Numerous mitochondria of lipoprotein composition, and some lipid bodies consisting of unsaturated phospholipids lie in association with the yolk nucleus which forms substratum for the former. The lipid bodies, present inside the germinal vesicle, follicular epithelium, and adjacent to the plasma membrane in association with some pinocytotic vacuoles, have been considered to play a significant role in the active transport of some substances from the environment into the ooplasm and from the latter into the germinal vesicle. The follicular epithelium itself is very poorly developed, negating its appreciable role in the contribution of specific substances into the oocyte, which seem to be contributed by the germinal vesicle showing a considerable development of nuclear sap, basophilic granules and nucleoli consisting of RNA and proteins; many large nucleoli bodily pass into the cytoplasm during the previtellogenesis of Channa, where their substance is gradually dissolved. The intense, diffuse, basophilic substance of the cytoplasm is believed due to free ribosomes described in many previous ultrastructural studies.During vitellogenesis, the various deutoplasmic inclusions, namely carbohydrate yolk, proteid yolk and fatty yolk, are deposited in the ooplasm. The carbohydrate yolk bodies rich in carbohydrates originate in association with the plasma membrane and correspond to vesicles and cortical granules of previous studies. The proteid yolk consisting of proteins and some lipoproteins, and fatty yolk containing first phospholipids and some triglycerides and then triglycerides only are deposited under the influence of yolk nucleus substance, mitochondria and cytoplasm. The mitochondria and yolk nucleus substance foreshadow in some way the pattern of these two deutoplasmic inclusions and persist at the animal pole of mature egg while the other inclusions of previtellogenesis disappear from view. The pigment granules, which also show a gradient from the animal to vegetal pole in Bufo, are also formed in association with yolk nucleus substance and mitochondria. Some glycogen also appears in both the species. The nuclear membrane becomes irregular due to the formation of lobes. The lipid bodies of the germinal vesicle come to lie outside the nuclear membrane, suggesting active transport of some substances into the ooplasm; many nucleoli bodily pass into the ooplasm of Bufo, where they are gradually absorbed. The amount of basophilic granules is considerably increased in the germinal vesicle during vitellogenesis. Various egg-membranes such as outer epithelium, thin theca, single-layered follicular epithelium, zona pellucida or vitelline membrane surround the vitellogenic oocytes. The zona pellucida formed between the oocyte and follicle cells consists of a carbohydrate-protein complex. The follicle cells show lipid droplets, mitochondria and basophilic substance in their cytoplasm. The various changes that occur in the components of the follicle during vitellogenesis seem to be initiated by gonadrotrophins formed under the influence of specific environmental conditions.The author wishes to express sincere appreciation and gratitude to Dr. Gilbert S. Greenwald, who has made the completion of this investigation possible.Ph. D. Population Council Post-doctoral Fellow.  相似文献   

13.
Yolk formation in Isohypsibius (Eutardigrada)   总被引:1,自引:0,他引:1  
Summary In Isohypsibius granulifer, yolk is autosynthesized. The Golgi apparatus is mainly responsible for the formation of yolk, which consists of irregular platelets with heterogeneous contents and a diameter of about 1 m. Dense globules, 300 nm in diameter, are visible among yolk platelets. These develop in the vesicles of the rough endoplasmic reticulum. The genesis of these vesicles is associated with the outer membrane of the nuclear envelope, which forms blebs intensively during previtellogenesis and early vitellogenesis. The developing oocytes are assisted by nurse cells, to which they are jointed by cytoplasmic bridges. For every oocyte, there are a number nurse cells, which are sister cells of the oocyte. In addition to rRNA, nurse cells transfer to the oocyte lipids, platelets of yolk formed in their cytoplasm, mitochondria and cortical granules.  相似文献   

14.
Qualitative and quantitative investigations on the hemolymph proteins in the adult firebrat Thermobia domestica were performed during an ovarian cycle in inseminated and noninseminated females. Variations of hemolymph protein concentration were determined by Lowry's method. In addition, the proteins were studied by gradient slab gel electrophoresis using nondenaturing conditions and microdensitometry. Besides five major protein fractions, which are present in both sexes, three female-specific protein bands (vitellogenins) are found in the hemolymph and in maturing oocytes. These vitellogenins have molecular masses of 430, 300 and 240 kiloDalton. In fact, associated with the main 300-kD band, there were two smaller bands (320 and 280 kD) indistinguishable by densitometric measurement. Quantitative changes of vitellogenins are linked to oocyte maturation. These proteins appeared in the hemolymph before ecdysis, at the same time as the first yolk granules in the basal oocytes. They increased after ecdysis during the intense vitellogenic phase and decreased during chorion formation. In noninseminated females, in which all maturing oocytes are resorbed before chorion formation, the level of the 300 kD vitellogenins remained lower than in inseminated females. The quantity of vitellogenins fell only after complete oosorption. Thus insemination caused changes in the relative quantities of the different vitellogenic proteins.  相似文献   

15.
The localization and characteristics of yolk platelet lectins (YLs) in Xenopus laevis oocytes were studied with antiserum against cortical granule lectins (CGLs) as a probe. In oocytes at stages I, II and III-IV, specific, immunofluorescent staining for the lectins was observed on the cortical cytoplasm extending about 2, 4 and 20 μm, respectively, from the egg surface. In stage III-IV oocytes, the superficial layer of the yolk platelets was also stained. The cortical cytoplasm included cortical granules, coated pits, coated vesicles, multivesicular bodies and primordial yolk platelets. The YLs were incorporated into the oocytes by endocytosis as demonstrated using gold-labeled YLs. On PAGE, native YLs gave two bands of CGL-like proteins and proteins that appeared as a single diffuse band. The YLs and the CGLs shared antigenicity and hemagglutination activity specific to D-galactoside residues. However, the proteins of the diffuse band had little or no activity for either hemagglutination or jelly-precipitation, suggesting that they were monomers with a single reactive site. These results indicate that the YLs are supplied to the oocytes, presumably from extracellular sources, polymerized to CGL-like molecules in the cortical cytoplasm and accumulated in the superficial layer of the yolk platelets.  相似文献   

16.
The formation of protein-carbohydrate yolk in the statoblast of a fresh-water bryozoan, Pectinatella gelatinosa, was studied by electron microscopy. Two types (I and II) of yolk cells were distinguished. The type I yolk cells are mononucleate and comprise a large majority of the yolk cells. The type II yolk cells are small in number; they become multinucleate by fusion of cells at an early stage of vitellogenesis. In both types of yolk cells, electron-dense granules (dense bodies) are formed in Golgi or condensing vacuoles, which are then called yolk granules. For the formation of yolk granules, the following processes are considered: 1. Yolk protein is synthesized in the rough-surfaced endoplasmic reticulum (RER) of the yolk cells. 2. The synthesized protein condenses in the cisternal space of the RER and is packaged into small oval swellings, which are then released from the RER as small vesicles (Golgi vesicles, 300-600 A in diameter). 3. The small vesicles fuse with one another to form condensing vacuoles, or with pre-existing growing yolk granules. 4. In the matrix of the condensing vacuoles or growing yolk granules, electron-dense fibers are fabricated and then arranged in a paracrystalline pattern to form the dense body. 5. After the dense body reaches its full size, excess membrane is removed and eventually the yolk granules come to mature. Toward the end of vitellogenesis of the yolk cells, the cytoplasmic organelles are ingested by autophagosomes derived from multivesicular bodies and disappear.  相似文献   

17.
Differentiating oocytes and associated follicle cells of two species of amphineurans (Mollusca) Mopalia muscosa and Chaetopleura apiculata have been studied by techniques of light and electron microscopy. In addition to the regularly occurring organelles, the ooplasm of young oocytes contains large, randomly situated, basophilic regions. These regions are not demonstrable in mature eggs. As oocytes differentiate, lipid, pigment and protein-carbohydrate yolk bodies accumulate within the ooplasm. Concomitant with the appearance of pigment and the protein carbohydrate containing yolk bodies, the saccules of the Golgi complex become filled with a dense material. Associated with the Golgi complex are cisternae of the rough endoplasmic reticulum which are filled with an electron opaque substance which is thought to be composed of protein synthesized by this organelle. That portion of the cisternae of the endoplasmic reticulum facing the Golgi complex shows evaginations. These evaginations are thought to finalize into protein containing vesicles that subsequently fuse with the Golgi complex. Thus, the Golgi complex in these oocytes might serve as a center for packaging and concentrating the protein used in the construction of the protein containing pigment or protein-carbohydrate yolk bodies. The suggestion is made that the Golgi complex may also synthesize the carbohydrate portion of the formentioned yolk bodies. In an adnuclear position in young oocytes are some acid mucopolysaccharide containing vacuolar bodies. In mature eggs, these structures are found within the peripheral ooplasm and we have referred to them as cortical granules. There is no alteration of these cortical granules during sperm activation.  相似文献   

18.
1. Concanavalin A (con A) reactive proteins have been detected in the plasma and ovaries of the oestradiol treated Gasterosteus aculeatus. 2. Concanavalin A-horseradish peroxidase (HRP) technique applied on nitrocellulose membranes reveals that vitellogenin (Vg) is the only mannose and glucose rich glycoprotein present in the plasma of oestradiol treated sticklebacks. Stickleback Vg can be purified by con A-Sepharose chromatography. 3. Con A reactivity in the ovary changes in the course of development of the oocytes. First, the yolk vesicles, which are synthesized by the oocyte itself, become con A positive. Later, the yolk granules, which contain vitellogenin synthesized in the liver and taken up from the plasma, show a clear affinity for con A. Con A staining disappears when mannopyranoside is added. 4. No con A staining is found in the periodic acid/Schiff staining chorion.  相似文献   

19.
20.
The reproductive biology of pond-raised Oreochromis (Nyasalapia) karongae was investigated. Gonad histology and gonadosomatic indices (GSIs) indicated a potential for multiple spawning in a season. Several peaks of oocyte-size distribution and several maturation stages occurred in the same gonad. GSIs of 2.5% and 1.4% were recorded in female and male fish, respectively. Three stages of oocyte maturation (primary growth, formation of yolk vesicles, vitellogenesis) and three stages of sperm development (spermatogonia, spermatid, spermatozoa) were observed. With the exception of the final maturation stage, all development phases seemed to proceed satisfactorily. The final stage of maturation was attained at oocyte size of 2.70 ± 0.54 mm and was selectively impaired in some female fish by a lack of deposition of vitellogenin. This abnormal condition led to atrophic oocytes lacking yolk granules and vesicles. Sexual maturation was attained at a relatively large size of 16.0 cm (114 g) compared with other tilapia of the mossambicoid group (i.e. Oreochromis mossambicus and Oreochromis shiranus ). A combination of gravimetric and histological techniques was successful in charting gonad changes and calibrating external against internal gonad features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号