首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive Oxygen species play an important role in pathology during malaria infection. The status of hepatic oxidative stress and antioxidant defence indices was studied during Plasmodium yoelii nigeriensis (P. y. nigeriensis) infection in mice and arteether treatment of P. y. nigeriensis infected mice. P. y. nigeriensis infection caused a significant increase in hepatic xanthine oxidase, rate of lipid peroxidation, reduced glutathione (GSH) and glutathione reductase with progressive rise in parasitemia. This was accompanied by a significant decrease in hepatic superoxide dismutase (SOD) and catalase with increase in parasitemia. Arteether treatment (10 mg/kg body weight of mice) of infected mice from day 2 of post infection resulted in complete clearance of parasitemia on day 4 of post infection which was accompanied by restoration of all the oxidative stress and antioxidant defence indices to normal levels.  相似文献   

2.
Plasmodium knowlesi (a simian malarial parasite) infection resulted in elevation of hepatic oxidative stress in monkeys. Further, the antioxidant defence system of the host was also noticeably affected. The infected monkeys showed a marked increase in the levels of superoxide (O2-), lipid peroxidation (LPO), glutathione (GSH) and xanthine oxidase (XO), and decreased levels of superoxide dismutase (SOD) and catalase. Oral administration of chloroquine (20 mg kg body wt-1 for 3 days) to infected monkeys caused recovery trends in oxidative stress and antioxidant defences to almost normal a week after cessation of drug treatment.  相似文献   

3.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

4.
Malarial infection during pregnancy has been associated with maternal anemia and death, abortion, still-birth and is a major cause of low birth weight, an important risk factor for infant morbidity and mortality in endemic areas. The present study was designed to delineate the oxidative stress in various organs (liver, spleen, kidney, brain and placenta) of pregnant Plasmodium berghei infected BALB/c mice. It was observed that pregnant-infected mice had higher parasitaemia than nonpregnant-infected mice. Most notably, levels of malondialdehyde (MDA), a measure of lipid peroxidation, reduced glutathione (GSH) and superoxide dismutase (SOD) levels were significantly higher in the liver, spleen, kidney and brain of pregnant-infected mice compared with pregnant mice. Although MDA levels were significantly higher, GSH and SOD levels remained unaltered in the placenta of pregnant-infected mice compared with pregnant mice. Furthermore, catalase activity was significantly lower in all the organs of pregnant-infected mice compared with pregnant mice. Histopathological observations in the organs clearly show the cellular and morphological alterations that may be occurring due to increased lipid peroxidation. Taken together, the data suggest that the increased severity of malarial infection during pregnancy may be due to accentuated oxidative stress.  相似文献   

5.
The present study examined the changes occurring in the pro phenoloxidase system and antioxidant defence status in haemolymph, hepatopancreas and muscle tissue of white spot syndrome virus (WSSV) infected Penaeus monodon. Tiger shrimps (P. monodon) were infected with white spot virus by intramuscular injection of the virus inoculum. Levels of lipid peroxides and the activities of phenoloxidase, glutathione-dependent antioxidant enzymes [glutathione peroxidase (GPX), glutathione-S-transferase (GST)] and antiperoxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)] were determined. WSSV infection induced a significant increase in lipid peroxidation in haemolymph, muscle and hepatopancreas of experimental P. monodon compared to normal controls. This was paralleled by significant reduction in the activities of phenol oxidase, glutathione-dependent antioxidant enzymes and antiperoxidative enzymes. The results of the present study indicate that the tissue antioxidant defence system in WSSV infected P. monodon is operating at a lower rate, which ultimately resulted in the failure of counteraction of free radicals, leading to oxidative stress as evidenced by the increased level of lipid peroxidation.  相似文献   

6.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

7.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

8.
Indices of oxidative stress viz., superoxide radical and H2O2 content increased in leaves of all the cultivars with the rise in salinity level, the increase was more pronounced and significant in salt-sensitive varieties and non-significant in resistant cultivars. Except for glutathione reductase (GR), basal activities of all other antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) were significantly higher in leaves of all the resistant cultivars as compared to the sensitive ones. A differential response of salinity was observed on various enzymatic and non-enzymatic components of antioxidant system in leaves of salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Activities of superoxide dismutase and glutathione reductase enhanced in all the tolerant cultivar while declined in the sensitive cultivars with increasing salinity from 0 to 100 mM. Salt-stress induced the activities of catalase and peroxidase in all the cultivars but the magnitude of increase was more pronounced in the sensitive cultivars than in the tolerant cultivars. Contrarily, APX activity increased in the salt-sensitive cultivars but showed no significant change in the salt-tolerant cultivars. The amount of ascorbic acid content, reduced glutathione (GSH), reduced/oxidized glutathione (GSSG) ratio was higher in leaves of the tolerant cultivars than that of the sensitive cultivars under saline conditions. It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.  相似文献   

9.
Mercury is a highly toxic metal which induces oxidative stress. Superoxide dismutases, catalase, and glutathion peroxidase are proteins involved in the endogenous antioxidant defence system. In the present study rats were administered orally, by gavage, a single daily dose of HgCl2 for three consecutive days. In order to find a relation between the proteins involved in the antioxidant defence and mercury intoxication, parameters of liver injury, redox state of the cells, as well as intracellular protein levels and enzyme activities of Mn-dependent superoxide dismutase (MnSOD), Cu-Zn-dependent superoxide dismutase (CuZnSOD), catalase, and glutathione peroxidase (GPx) were assayed both in blood and in liver homogenates. HgCl2 at the doses of 0.1 mg/kg produced liver damage which that was detected by a slight increase in serum alanine aminotransferase and gamma glutamyl transferase. Hepatic GSH/GSSG ratio was assayed as a parameter of oxidative stress and a significant decrease was detected, as well as significant increases in enzyme activities and protein levels of hepatic antioxidant defence systems. Changes in both MnSOD and CuZnSOD were parallel to those of liver injury and oxidative stress, while the changes detected in catalase and GPx activities were progressively increased along with the mercury intoxication. Other enzyme activities related to the glutathione redox cycle, such as glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), also increased progressively. We conclude that against low doses of mercury that produce a slight oxidative stress and liver injury, the response of the liver was to induce the synthesis and activity of the enzymes involved in the endogenous antioxidant system. The activities of all the enzymes assayed showed a rapidly induced coordinated response.  相似文献   

10.
The present study is an effort to identify a potent chemopreventive agent against various diseases (including cancer) in which oxidative stress plays an important causative role. Here, we investigated the effect of a hydroalcoholic (80% ethanol: 20% distilled water) extract of aerial roots of Tinospora cordifolia (50 and 100mg/kg body wt./day for 2 weeks) on carcinogen/drug metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione (GSH) content, lactate dehydrogenase and lipid peroxidation in liver of 8-week-old Swiss albino mice. The modulatory effect of the extract was also examined on extrahepatic organs, i.e., lung, kidney and forestomach, for the activities of GSH S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD) and catalase. Significant increases in the levels of acid-soluble sulfhydryl (-SH) and cytochrome P(450) contents, and enzyme activities of cytochrome P(450) reductase, cytochrome b(5) reductase, GST, DTD, SOD, catalase, GSH peroxidase (GPX) and GSH reductase (GR) were observed in the liver. Both treated groups showed decreased malondialdehyde (MDA) formation. In lung SOD, catalase and GST; in kidney SOD and catalase; and in forestomach SOD, DTD and GST showed significant increase at both dose levels of treatment. BHA (0.75%, w/w in diet), a pure antioxidant compound, was used as a positive control. This group showed increase in hepatic levels of GSH content, cytochrome b(5), DTD, GST, GR and catalase, whereas MDA formation was inhibited significantly. In the BHA-treated group, the lung and kidney showed increased levels of catalase, DTD and GST, whereas SOD was significantly increased in the kidney and forestomach; the latter also showed an increase in the activities of DTD and GST. The enhanced GSH level and enzyme activities involved in xenobiotic metabolism and maintaining antioxidant status of cells are suggestive of a chemopreventive efficacy of T. cordifolia against chemotoxicity, including carcinogenicity, which warrants further investigation of active principle (s) present in the extract responsible for the observed effects employing various carcinogenesis models.  相似文献   

11.
Colon cancer is the major health hazard related with high mortality and it is a pathological consequence of persistent oxidative stress and inflammation. Farnesol, an isoprenoid alcohol, has been shown to possess antioxidant, anti-inflammatory and chemopreventive properties. The present study was performed to evaluate the protective efficacy of farnesol against 1,2-dimethylhydrazine (DMH) induced oxidative stress, inflammatory response and apoptotic tissue damage. Farnesol was administered once daily for seven consecutive days at the doses of 50 and 100 mg/kg body weight in corn oil. On day 7, a single injection of DMH was given subcutaneously in the groin at the dose of 40 mg/kg body weight. Protective effects of farnesol were assessed by using caspase-3 activity, tissue lipid peroxidation (LPO) and antioxidant status as end point markers. Further strengthening was evident on histopathological observations used to assess the protective efficacy of farnesol. Prophylactic treatment with farnesol significantly ameliorates DMH induced oxidative damage by diminishing the tissue LPO accompanied by increase in enzymatic viz., superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and quinone reductase (QR) and non-enzymatic viz., reduced glutathione (GSH) antioxidant status. Farnesol supplementation significantly decreased caspase-3 activity in colonic tissue. Histological findings also revealed that pretreatment with farnesol significantly reduced the severity of submucosal edema, regional destruction of the mucosal layer and intense infiltration of the inflammatory cells in mucosal and submucosal layers of the colon. The data of the present study suggest that farnesol effectively suppress DMH induced colonic mucosal damage by ameliorating oxidative stress, inflammatory and apoptotic responses.  相似文献   

12.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

13.
Prunus necrotic ringspot rvirus (PNRSV) was able to invade the immature apricot seed including the embryo. The amount of virus was very high inside the embryo compared with that present in the cotyledons. PNRSV infection produced an oxidative stress in apricot seeds as indicated by the increase in lipid peroxidation, measured as thiobarbituric acid-reactive substances. This lipid peroxidation increase was parallelled with an imbalance in the seed antioxidant enzymes. A significant decrease in the ascorbate–GSH cycle enzymes as well as in peroxidase (POX) activity took place in infected seeds, suggesting a low capability to eliminate H2O2. No changes in superoxide dismutase (SOD) or catalase activity were observed. A significant decrease in polyphenoloxidase (PPO) activity was also observed. Native PAGE revealed the presence of three different SOD activity bands in apricot seeds: a Mn-containing SOD and two CuZn-containing SODs. Only an isozyme with catalase, glutathione reductase (GR) or PPO activity was detected in both healthy and infected apricot seeds. Regarding POX staining, three bands with POX activity were detected in native gels in both healthy and infected seeds. The gel results emphasise that the drop detected in POX, GR and PPO activities in PNRSV-infected apricot seeds by kinetic analyses was also evident from the results obtained by native PAGE. The oxidative stress and the imbalance in the antioxidant systems from PNRSV-infected apricot seeds resemble the hypersensitive response observed in some virus–host interactions. This defence mechanism would inactivate PNRSV during seed formation and/or the storage period or even during seed germination. Those results can explain the decrease in seed germination and the low transmission of PNRSV by seeds in apricot trees.  相似文献   

14.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

15.
16.
《Free radical research》2013,47(12):1505-1513
Abstract

Oxidative stress is associated with decreased female fertility and adversely affects prenatal development. Mammalian cells have developed a network of enzymatic and non-enzymatic antioxidant defence systems to prevent oxidative stress. Little attention has been paid to the antioxidative pathways in placentas of normal and disturbed pregnancies, leaving a gap in our knowledge about the role of antioxidants in the control of foeto-placental development. The challenges in studying early human pregnancy can partly be overcome by designing animal models of abnormal pregnancy. We aimed to determine whether the antioxidant status of placentas from the CBA/J × DBA/2 abortion-prone pregnant mice differed from that of normal pregnant mice. The foetal/placental weight ratio was lower in abortion-prone matings compared with that in non-abortion-prone matings. The increased placental malondialdehyde (MDA) content, the end products of lipid peroxidation, with concomitants alterations in placental antioxidants, namely copper-zinc containing superoxide dismutase (SOD1), manganese containing (SOD2), glutathione peroxidases (GPX), glutathione reductase (GR) and catalase (CAT) activities may be involved in placental and foetal growth restriction. We show that placental oxidative stress is linked with poor prenatal development and pregnancy losses in CBA/J × DBA/2 mice matings. This animal model may be useful in the evaluation of nutritional antioxidant therapies for oxidative stress and associated prenatal developmental disorders.  相似文献   

17.
The effect of Monascus purpureus red mould rice (RMR) on modulation of lipid metabolism and oxidative stress was studied in hypercholesterolemic rats. Cholesterol feeding for 14 weeks caused a significant increase in the lipid peroxides and total thiols and antioxidant enzymes, viz. glutathione peroxidase (GPx), glutathione reductase (GRd), superoxide dismutase (SOD) and catalase (CAT) in serum and liver in comparison to the control group. However, supplementation of RMR to hypercholesterolemic rats at 8, 12 and 16% significantly increased the GRd, GPx, SOD and CAT activities in serum and liver tissues. Furthermore, RMR feeding significantly decreased total thiols and lipid peroxides and also increased other antioxidant molecules such as glutathione and ascorbic acid in high-cholesterol fed rats. The efficiency of RMR (16%) in modulating the antioxidant molecules and antioxidant enzymes is comparable to standard drug-lovastatin. Thus, this study suggests that the long-term administration of RMR may play an important role in suppressing oxidative stress and, thus, may be useful for the prevention and/or early treatment of hypercholesterolemia.  相似文献   

18.
In this study, we evaluated the oxidant status and antioxidant defense capabilities of the heart during the course of Trypanosoma cruzi infection and disease development in a murine model system. Our data show that the extent of protein carbonylation and lipid peroxidation is increased in the heart, but not the skeletal muscle, of infected mice. The level of oxidative injury biomarkers in the myocardium consistently increased with chronic disease severity. The antioxidant defense constituted by catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GSR), and reduced glutathione was increased in murine heart and skeletal tissue in response to the stress of T. cruzi infection. After the initial burst, CAT, GPx, and GSR remained unresponsive to the severity of chronic tissue damage in chagasic hearts. The cardiac level of Mn(2+) superoxide dismutase (MnSOD) was diminished in chagasic mice. Our data suggest that the host responds to acute injuries by activating antioxidant defenses that are of sufficient magnitude to scavenge the reactive oxidants in skeletal tissue. The myocardia of infected mice, however, sustain increased oxidative injuries with disease progression. We surmise that MnSOD deficiencies, resulting in the increased release of mitochondrial free radicals, lead to sustained oxidative stress that exceeds the cardiac antioxidant defense capacity and contribute to persistent oxidative damage in chagasic myocardium.  相似文献   

19.
Many helminths cause long-lasting infections, living for several years in mammalian hosts reflecting a well balanced coexistence between host and parasite. There are many possible explanations as to how they can survive for lengthy periods. One possibility is their antioxidant systems, which can serve as defence mechanisms against host-generated oxygen radicals. Therefore, the aim of this experimental study was to examine the antioxidant system in Hymenolepisdiminuta during short (1.5 months young tapeworms) and long (1.5 years old tapeworms) term infection in the rat small intestine.The strobilae of H. diminuta tapeworms (14 young and three old) were divided into three pieces: the anterior part, containing the genital primordiae in the immature segments; the medial part, containing the early uterus in the mature, hermaphroditic proglottids and the terminal part with the mature gravid uterus in the gravid segments. Supernatants of these fragments were used for determination of markers of oxidative stress: concentration of thiobarbiturate reactive substances (TBARS) and of reduced glutathione (GSH), and the activity of antioxidant enzymes: superoxide dismutase (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (GSHPxs), glutathione transferase (GST) and glutathione reductase (GSHR).The results indicated changes in levels of oxidative stress markers and antioxidant enzyme activity in both the young and old forms of H. diminuta. Relatively high activity of SOD (particularly in the anterior part of young tapeworms) was observed, as was increased activity of total GSHPx and a relatively high concentration of GSH in all parts of the tapeworms. These are caused by exposure to increased amount of ROS, which are produced during the inflammatory state. Due to the high activity of antioxidant enzymes, the anterior section of young and old tapeworms is equipped with a very effective antioxidant system. Old organisms also effectively resist oxidative stress due to reduced levels of lipid peroxidation and the high activity of GST, all of which suggest good adaptation to the hostile environment in the host’s intestine.  相似文献   

20.
To investigate the protective effects and the possible mechanisms of garlic oil (GO) against N-nitrosodiethylamine (NDEA)-induced hepatocarcinoma in rats, Wistar rats were gavaged with GO (20 or 40 mg/kg) for 1 week, and then were gavaged with GO and NDEA (10 mg/kg) for the next 20 weeks. The changes of morphology, histology, the biochemical indices of serum, and DNA oxidative damage of liver were examined to assess the protective effects. Lipid peroxidation (LPO), antioxidant defense system, and apoptosis-related proteins were measured to investigate potential mechanisms. At the end of the study (21 weeks), GO administration significantly inhibited the increase of the nodule incidence and average nodule number per nodule-bearing liver induced by NDEA, improved hepatocellular architecture, and dramatically inhibited NDEA-induced elevation of serum biochemical indices (alanine aminotransferase , aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase) and hepatic 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in a dose-dependent manner. The mechanistic studies demonstrated that GO counteracted NDEA-induced oxidative stress in rats illustrated by the restoration of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) levels, and the reduction of the malondialdehyde (MDA) levels in liver. Furthermore, the mRNA and protein levels of Bcl-2, Bcl-xl, andβ-arrestin-2 were significantly decreased whereas those of Bax and caspase-3 were significantly increased. These data suggest that GO exhibited significant protection against NDEA-induced hepatocarcinogenesis, which might be related with the enhancement of the antioxidant activity and the induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号