首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maximal dextran production (54–55 g/l) by the bacterium Leuconostoc mesenteroides strain V-2317D was observed in molasses-containing media in the presence of 17.5% glucose at pHinit 6.75. The beginning of dextran production depended on the amount of inoculate; maximum yield was observed at a shaker rate of 200 rpm. The dextran produced by L. mesenteroides grown in the molasses-containing medium was representative of three fractions differing in molecular weight and composition: the high-(∼54.5%), medium- (∼ 27.9%), and low-molecular-weight (∼2.85%) fractions.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 4, 2005, pp. 409–413.Original Russian Text Copyright © 2005 by Vedyashkina, Revin, Gogotov.  相似文献   

2.
On the basis of high enzyme activity a newly isolated strain of L. mesenteroides CMG713 was selected for dextran production. For maximum yield of dextran, effects of various parameters such as pH, temperature, sucrose concentration and incubation period were studied. L. mesenteroides CMG713 produced maximum dextran after 20 hours of incubation at 30 masculineC with 15% sucrose at pH 7.0. The molecular mass distribution of dextran produced by this strain showed that its molecular mass was about 2.0 million Da. Dextran analysis by (13)C-NMR spectrometry showed no signals corresponding to any other linkages except alpha-(1-->6) glycosidic linkage in the main chain, which has not been reported before. Physico-chemical properties of this unique dextran were also studied. These optimised conditions could be used for the commercial production of this unique high molecular weight dextran, which have significant industrial perspectives.  相似文献   

3.
Dextrans are the main exopolysaccharides produced by Leuconostoc species. Other dextran-producing lactic acid bacteria include Streptococci, Lactobacilli, and Weissella species. Commercial production and structural analysis has focused mainly on dextrans from Leuconostoc species, particularly on Leuconostoc mesenteroides strains. In this study, we used NMR spectroscopy techniques to analyze the structures of dextrans produced by Leuconostoc citreum E497 and Weissella confusa E392. The dextrans were compared to that of L. mesenteroides B512F produced under the same conditions. Generally, W. confusa E392 showed better growth and produced more EPS than did L. citreum E497 and L. mesenteroides B512F. Both L. citreum E497 and W. confusa E392 produced a class 1 dextran. Dextran from L. citreum E497 contained about 11% alpha-(1-->2) and about 3.5% alpha-(1-->3)-linked branches whereas dextran from W. confusa E392 was linear with only a few (2.7%) alpha-(1-->3)-linked branches. Dextran from W. confusa E392 was found to be more linear than that of L. mesenteroides B512F, which, according to the present study, contained about 4.1% alpha-(1-->3)-linked branches. Functionality, whether physiological or technological, depends on the structure of the polysaccharide. Dextran from L. citreum E497 may be useful as a source of prebiotic gluco-oligosaccharides with alpha-(1-->2)-linked branches, whereas W. confusa E392 could be a suitable alternative to widely used L. mesenteroides B512F in the production of linear dextran.  相似文献   

4.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

5.
Cells of Leuconostoc mesenteroides were immobilized within porus, stainless-steel (SS) supports and used for dextransucrase (DS) and dextran production. The pore size of the support significantly affected the dextran yields, which were greatest with average pore sizes of 2-5 mum. All immobilized-cell biocatalysts in porous stainless steel produced higher yields than free cells, with the exception of cells confined in submicrometer pores (0.5 mum). Coating supports of larger pore size (40 and 100 mum) with calcium alginate enhanced the cell-loading capacity of the supports and increased dextran and fructose yields in the cell-free broth. Controlled, fed-batch, DS production (activation), as a step preliminary to dextran production, significantly improved the subsequent dextran and fructose yields and shortened the time required to attain the maximum such yields. Scanning electron microscopy (SEM) of immobilized L. mesenteroides in stainless steel shows an irregular pattern of the microorganism inside the pores of the solid supports. Coating the porous solid supports with a cell-free calcium alginate layer led to an increase in the cell density inside the support. Cell growth inside the coated, porous stainless steel had no distinct growth form. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
After irradiation with photons in the energy range of 70-1000 eV using the synchrotron radiation facility at Pohang, Korea, dextransucrase constitutive and hyper-producing mutants from Leuconostoc mesenteroides were isolated. The mutant (B-512FMCM) produced 13 times higher activity and showed complete constitutivity for dextransucrase production. It synthesized the same dextran as B-512FMC. The dextransucrase of the mutant transferred glucose from dextran to maltose. This novel method is a new technique for the development of industrial microorganisms.  相似文献   

7.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

8.
Bacterial profile modification (BPM) is being developed as an oil recovery technique that uses bacteria to selectively plug oil depleted zones within a reservoir to divert displacing fluids (typically water) into oil-rich zones. Leuconostoc mesenteroides, which produces dextran when supplied with sucrose, is a bacterium that is technically feasible for use in profile modification. However, the technique requires controlled bacterial growth to produce selective plugging.A kinetic model for the production of cells and polysaccharides has been developed for L. mesenteroides bacteria. This model, based on data from batch growth experiments, predicts saccharide utilization, cell generation, and dextran production. The underlying mechanism is the extracellular breakdown of sucrose into glucose and fructose and the subsequent production of polysaccharide (dextran). The monosaccharides are then available for growth. Accompanying sucrose consumption is the utilization of yeast extract. The cell requires a complex media that is provided by yeast extract as a source of vitamins and amino acids. Varying the concentration ratio of yeast extract to sucrose in the growth media provides a means of controlling the amount of polymer produced per cell. Consequently, in situ bacteria growth can be controlled by the manipulation of nutrient media composition, thereby providing the ability to create an overall strategy for the use of L. mesenteroides bacteria for profile modification.  相似文献   

9.
Multiple forms of dextransucrase (sucrose:1.6-alpha-D-glucan 6-alpha-D-glucosyltransferae EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F strain were shown by gel filtraton and electrophoretic analyses. Two components of enzyme, having different affinities for dextran gel, were separated by a column of Sephadex G-100. The major component voided from the Sephadex column was treated with dextranase and purified to an electrophoretically homogeneous state. The ]urified enzyme had a molecular weight of 64 000-65 000, pI value of 4.1, and 17% of carbohydrate in a molecule. EDTA showed a characteristic inhibition on the enzyme while stimulative effects were observed by the addition of exogenous dextran to the incubation mixture. The enzyme activity was stimulated by various dextrans and its Km value was decreased with increasing concentration of dextran. The purified enzyme showed no affinity for a Sephadex G-100 gel, and readily aggregated after the preservation at 4 degrees C in a concentrated solution.  相似文献   

10.
Rabbit anti-dextran B1355 sera prepared by injecting rabbits with Leuconostoc mesenteroides NRRL B1355 were separated on a Sephadex G75 column into two fractions, one binding and the other not binding to the column. Oligosaccharide inhibition of precipitation of the two fractions with dextran B1355 indicated that both fractions had alpha 1 linked to 3 specificity. However, antibodies in the non-binding fraction were shown to be directed against O-alpha-D-glucopyranosyl-(1 linked to 3)-O-alpha-D-glucopyranosyl-(1 linked to 6)-D-glucose, while those in the binding fraction were directed against O-alpha-D-glucopyranosyl-(1 linked to 6)-O-alpha-D-glucopyranosyl-(1 linked to 3)-D-glucose. These results are consistent with the proposal of Bhoopalam et al. (Proc. Soc. Exp. Biol. Med. (1979(=) 161, 430-434) that there are different epitopic groups on this dextran.  相似文献   

11.
The extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-640 was purified using polyethylene glycol fractionation (PEG) and gel-filtration. The cell free extract was subjected to fractionation by PEG-200, 400 and 1500. The 10% (w/v) PEG-1500 gave dextransucrase with maximum specific activity of 23 with 40 fold purification in a single step. The purified enzyme showed multiple molecular forms on SDS-PAGE, however the same sample showed a single band on non-denaturing native-PAGE. The purified dextransucrase fractions obtained from PEG-1500, confirmed the presence of dextran, when run on SDS-PAGE under non-denaturing gels for in situ activity detection by Periodic Acid Schiff's staining. The activity bands corresponded to the native and active form of the purified dextransucrase of approximately, 180kDa molecular size, that appeared on the denaturing gels stained with Coomassie Brilliant Blue. No bands appeared after staining the activity of dextransucrase on non denaturing SDS-PAGE gels with raffinose, which excluded the presence of fructosyltransferases. Further purification of 10% PEG-1500 purified dextransucrase by gel-filtration gave dextransucrase with specific activity of 35 with 61 fold purification.  相似文献   

12.
A derepressed and partially constitutive mutant for dextranase of Lipomyces starkeyi was selected after ethyl methane sulphonate mutagenesis by zone clearance on blue dextran agar plates. The mutant produced dextranase when grown on glucose, fructose and sucrose as well as on dextran, and more enzyme was produced by the mutant than by the parental strain when grown on 1% dextran. The pH and temperature optima for the mutant dextranase were 5.5 and 55°C, respectively. Dextranase produced on sucrose produced more isomaltose and less glucose after dextran hydrolysis than the equivalent enzyme produced on dextran. The clinical size dextran (average mol. wt of 75000 ± 25000) yield of mixed culture fermentation with the mutant and Leuconostoc mesenteroides was 94% of the total dextran produced.  相似文献   

13.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

14.
Leuconostoc mesenteroides B-1355 produced at least three glucosyltransferases (GTFs). We previously identified GTF-2 as alternansucrase and GTF-3 as fraction L dextransucrase. We here show that GTF-1 is a previously unreported sucrase that synthesized water-insoluble dextran. Our evidence consisted of the following. (i) GTF-1 was a major component and GTF-2 was a minor component of culture supernatant fractions, but supernatant fractions actively synthesized water-insoluble glucan. (ii) GTF-1 and culture supernatants produced an unusual high-pressure liquid chromatography pattern of malto-oligosaccharides that was not reproduced by GTF-2-GTF-3 mixtures. (iii) GTF-2, GTF-3, and GTF-2-GTF-3 mixtures did not synthesize insoluble glucan from sucrose. Nearly all of the alternansucrase in young (less than 17-h) cultures was associated with the cells.  相似文献   

15.
Dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5) (3 IU/ml culture supernatant) was obtained by a modification of the method of Robyt and Walseth (Robyt, J.F. and Walseth, T.F. (1979) Carbohydr. Res. 68, 95-111) from a nitrosoguanidine mutant of Leuconostoc mesenteroides NRRL B-512F selected for high dextransucrase production. Dialyzed, concentrated culture supernatant (crude enzyme) was treated with immobilized dextranase (EC 3.2.1.11) and chromatographed on a column of Bio-Gel A-5m. The resulting, purified enzyme lost activity rapidly at 25 degrees C or on manipulation, as did the crude enzyme when diluted below 1 U/ml. Both enzyme preparations could be stabilized by low levels of high-molecular-weight dextran (2 micrograms/ml), poly(ethylene glycol) (e.g., 10 micrograms/ml PEG 20 000), or nonionic detergents (e.g., 10 micrograms/ml Tween 80). The stabilizing capacity of poly(ethylene glycol) and of dextran increased with molecular weight. Calcium had no stabilizing action in the absence of other additions, but reduced the inactivation that occurred in the presence of 0.5% bovine serum albumin or high concentrations (greater than 0.1%) of Triton X-100. In summary, dextransucrase could be stabilized against activity losses caused by heating or by dilution through the addition of low concentrations of nonionic polymers (dextran, PEG 20000, methyl cellulose) or of nonionic detergents at or slightly below their critical micelle concentrations.  相似文献   

16.
In fed-batch fermentation, cells of L. mesenteroides immobilized on three types of Celite were used to produce dextransucrase (DS) followed by production of dextran. A layer of calcium alginate on the porous Celite R630 particles improved their mechanical stability, increased the amount of soluble DS produced and decreased the cell leakage from the highly porous support. Enzyme production with the immobilized cell cultures was significantly affected by both pore and particle size. Immobilized cultures using Celite R648 (average particle radius of 200 mum and pore size of 0.14 mum) produced the highest total enzymatic activity, followed by Celite R633, alginate-coated Celite R630, Celite R630, and then calcium alginate beads. Culture of free cells produced about 18% more total enzymatic activity than immobilized cells in calcium alginate beads, but about 64% less than immobilized cells on Celite R630. It is expected that larger amounts of enzymatic activity than measured are immobilized inside the alginate-coated Celite R630 and calcium alginate beads due to the mass transfer limitation conferred by the dextran product formed therein. The dextran yield from conversion of sucrose to dextran and fructose with all such enzyme-enriched, immobilized-cell cultures was higher than that obtained from free-cell culture under similar conditions.  相似文献   

17.
Lopez A  Monsan P 《Biochimie》1980,62(5-6):323-329
Dextran sucrase has been produced by fermentation of Leuconostoc mesenteroides NRRL B-512, with and without continuous sucrose addition to improve enzyme production. The enzyme preparation has been concentrated from the fermentation broth by ultrafiltration and purified by gel permeation chromatography on Ultrogel. The specific activity of the dextran sucrase was greatly enhanced by calcium chloride addition to the purified enzyme. This enzyme preparation has been immobilized by covalent coupling onto an amino porous silica support (Spherosil) activated with glutaraldehyde. Immobilized dextran sucrase derivatives with an activity up to 830 dextran sucrase units per g. support could thus be obtained. The effect of the support specific area on coupling efficiency and reaction kinetics has been investigated, and the effect of intraparticular diffusion underlined. The molecular weight distribution of the dextran has been determined when varying several parameters.  相似文献   

18.
Summary Peroxisomes, lysosomes, and mitochondria have been purified from rat liver by sucrose density gradient centrifugation without prior treatment of the animals with Triton WR-1339 or other detergents which cause hyperlipidemia. A crude organelle fraction was first prepared by differential centrifugation of a rat liver homogenate, this fraction contained approximately 70% of the mitochondrial, 40% of the peroxisomal, and 30% of the lysosomal marker enzymes measured in the homogenate. The crude organelle fraction was applied to the top of a sucrose density gradient and centrifuged. A clear separation of the organelles was obtained only when dextran was present in the gradients. Success or failure of the method was found to depend on the particular preparation of dextran used in the gradients. A method for subfractionating dextran was developed which yields dextran fractions that make the separations completely reproducible. Starting with a crude organelle fraction derived from 12 g of liver, approximately 85% of the mitochondrial, 70% of the peroxisomal, and 50% of the lysosomal activities were obtained as pure fractions. The organelle separation takes less than five hours to complete, it represents a substantial improvement over previous methods.  相似文献   

19.
Kim D  Robyt JF  Lee SY  Lee JH  Kim YM 《Carbohydrate research》2003,338(11):1183-1189
Reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase with increasing concentrations of sucrose, from 0.1 to 4.0 M, gave a decreasing amount of high-molecular weight dextran (HMWD) (>10(6) Da) with a concomitant increase in low-molecular weight dextran (LMWD) (<10(5) Da). At 0.1 M sucrose, pH 5.5, and 28 degrees C, 99.8% of the dextran had a MW>10(6) Da and at 4.0 M sucrose, 69.9% had a MW<10(5) Da and 30.1% had a MW>10(6) Da, giving a bimodal distribution. The degree of branching increased from 5% for 0.1 M sucrose to 16.6% for 4.0 M sucrose. The temperature had very little effect on the size of the dextran, which was >10(6) Da, but it had a significant effect on the degree of branching, which was 4.8% at 4 degrees C and increased to 14.7% at 45 degrees C. Both the molecular weight (MW) and the degree of branching were not significantly affected by different pH values between 4.5 and 6.0.  相似文献   

20.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号