首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白逢彦 《微生物学报》2022,62(11):4188-4201
采用低温底层发酵的拉格(lager)啤酒15世纪开始在德国巴伐利亚地区出现,19世纪初流行至全世界,目前已成为全球产量最高的酒精饮料。目前已阐明,拉格啤酒发酵酵母为巴斯德酿酒酵母(Saccharomyces pastorianus),该种是一个杂交种,由艾尔(ale)啤酒酵母(Saccharomyces cerevisiae)与野生真贝氏酿酒酵母(Saccharomyces eubayanus)杂交而成,后者赋予了拉格啤酒酵母的耐低温能力。近年的群体遗传学和群体基因组学研究表明,拉格啤酒酵母的野生亲本S.eubayanus起源于青藏高原,可能通过丝绸之路传播到了欧洲。比较基因组学研究表明,拉格啤酒酵母包含2个株系,即Ⅰ系/Saaz系和Ⅱ系/Frohberg系,早期分别流行于中欧和西欧地区。前者为近似异源3倍体,后者为近似异源4倍体。2个株系在耐低温、麦芽三糖利用和风味物质产生能力等方面具有明显差异。在中国普通微生物菌种保藏管理中心(China General Microbiological Culture Collection Center,CGMCC)保藏的S.pastorianus...  相似文献   

2.
拉格啤酒酵母是我国啤酒酿造的主要菌种。细胞絮凝是啤酒酵母重要的生产性状,在不影响发酵性能的情况下适度提高酵母的絮凝能力,有助于发酵结束时细胞和产物的分离,有利于工业化啤酒生产,具有较高的经济价值。前期在对一株工业用拉格啤酒酵母G03及其絮凝突变株的研究中,挖掘到一个可能影响啤酒酵母絮凝性的候选基因RIM21。为了验证该基因的作用,文中在G03中对RIM21进行了敲除,发现RIM21敲除后,酵母在11 ℃发酵条件下的絮凝性能增强,基因FLO5、Lg-FLO1及细胞壁完整性途径中的部分基因表达上调。同时,CO2失重、酒精度、发酵度等发酵指标未有明显变化。另外,发现RIM21的缺失增强了啤酒酵母对细胞壁抑制剂的耐性。研究结果为阐释低温发酵条件下啤酒酵母的絮凝调控机理及菌株絮凝性的改善提供了基础。  相似文献   

3.
低双乙酰啤酒酵母菌株BEZ112的选育   总被引:15,自引:1,他引:15  
以啤酒酿造生产菌株啤酒酵母(Saccharomyces cerevisiae)FB作为出发菌株,用甲基磺酸乙酯(EMS)诱变,经分离筛选得到一株优良的啤酒酵母菌株BEZ112。该菌株的絮凝性、发酵度、酒精度、发酵液的总酯和总高级醇的含量等特性保持了亲株的优良性状。但以12°Bx麦芽汁为培养基用500mL三角瓶在12℃下发酵,该菌株发酵至第4d,发酵液中的双乙酰含量达到峰值(0.291mg/L),比出发菌株FB发酵4d的峰值降低了30%,发酵至第8d,BEZ112发酵液中的双乙酰含量比出发菌株FB的降低了23%。以12°Bx麦芽汁为培养基用500L罐在12℃下发酵8d,BEZ112发酵液中的双乙酰含量(0.091mg/L)比出发菌株FB的(0.124mg/L)降低了27%。发酵得到的啤酒口感纯正清爽。  相似文献   

4.
邴健  白逢彦 《菌物学报》2018,37(11):1441-1453
近年来的基因组学研究结果已证实拉格啤酒酵母Saccharomyces pastorianus是一个由艾尔啤酒酵母S. cerevisiae和真贝氏酿酒酵母S. eubayanus杂交而成的杂交种,并可根据地域传承和染色体倍性分为两个株系,即I型/Saaz系和II型/Frohberg系。前者主要为异源3倍体,后者则主要为异源4倍体。为了探讨中国啤酒酿造酵母菌的物种和菌系归属,我们根据拉格啤酒酵母及其两个菌系的基因组特性,制定了一套基于IntFR片段种特异性扩增和ITS-RFLP分析的精确但简便易行的拉格啤酒酵母菌物种和株系鉴定新方法,并以酿酒酵母属内相关种的模式或权威菌株和部分酒精及面包酵母为参照,对保藏于中国普通微生物菌种保藏中心(CGMCC)的41株啤酒酿造酵母菌进行了重新鉴定和分型。这些菌株除1株原定名为贝氏酿酒酵母S. bayanus外,其余菌株的原定名均为S. cerevisiae。研究结果确认了S. bayanus菌株鉴定的正确性,但在其余的40株啤酒酵母菌株中,21株属于S. cerevisiae,1株属于葡萄汁酿酒酵母S. uvarum,18株属于S. pastorianus。菌系鉴定和流式细胞测定结果显示在确认的S. pastorianus菌株中,1株为I型/Saaz系,3倍体;17株为II型/Frohberg系,其中9株为4倍体,两株为3倍体,5株介于3倍至4倍体之间。啤酒酵母物种和株系的确认对优化发酵工艺和菌种选育及遗传改造等具有重要意义。  相似文献   

5.
采用10 Kev低能N~+注入啤酒酵母,经筛选获得一菌株Lz37,再用150 MPa超高压处理菌株Lz37,经双乙酰平板筛选获得一菌株Gy3,其凝聚性很强,适合于在小麦汁中发酵啤酒,其发酵度为66%~68%,双乙酰含量低于口味阈值,遗传稳定性良好。将Gy3酵母定为全小麦啤酒生产应用酵母,命名为商啤3号(Sp-03)。SP-03啤酒酵母菌株的各项生理及生产性能都较优良,特别是在全小麦芽啤酒的酿造中适用性较强,经过对发酵工艺等的调整,用其酿制的啤酒口感纯正、淡爽、柔和。  相似文献   

6.
利用啤酒酵母菌对无机硒(亚硒酸钠)进行有机转化。通过在培养基中加入不同浓度的无机硒溶液和不同时间加入无机硒溶液,于28℃、220 r/min摇床条件下培养5 d,离心得菌细胞,测定前样品预处理:破碎菌细胞,显微镜下计数,计算破碎率,破碎后的菌体装入透析袋于蒸馏水中透析除去无机硒。准确测定无机硒,用浓硫酸-高氯酸的消化体系消化样品后,紫外分光光度法于335 nm处测量吸光度,在标准曲线上查出硒含量,计算无机硒的转化率。啤酒酵母菌的最佳加硒时间为24 h,亚硒酸钠浓度大于12μg/mL对啤酒酵母菌转化无机硒有明显抑制作用,啤酒酵母菌对无机硒的摄入率约为62%,转化率约为53%;超生波细胞粉碎仪破碎细胞的破碎率为55%左右。结果表明,啤酒酵母菌可以转化无机硒。  相似文献   

7.
正酵母菌是指主要以单细胞形式存在,以芽殖或裂殖方式进行无性繁殖,有性生殖阶段不产生子实体的真菌。其对应的英语单词"yeast",衍生于用来描述啤酒和面包等的发酵现象的词汇。因此,酵母菌通常被理解为具有发酵能力的单细胞真菌。在遗传和分子生物学等研究领域,"yeast"或"budding yeast"(出芽酵母)常被当作"Saccharomyces cerevisiae"(酿酒酵母)的代名词。但在分类学上,酵母菌包括真菌界Fungi内子囊菌门Ascomycota  相似文献   

8.
啤酒酿造中,双乙酰是影响啤酒生产熟化期长短及其风味的主要因素.存在于多种细菌中的a-乙酰乳酸脱羧酶(EC4.1.1.5,简称a-ALDC)[1]能将双乙酰的前体a-乙酰乳酸直接转化为对啤酒风味没有影响的乙偶姻,从而大大降低啤酒中双乙酰的含量,缩短啤酒熟化期.但所有的啤酒酵母菌不产生此酶.虽然在发酵过程中添加此酶是一个解决的途径,但解决问题的根本是将ALDC基因引入到啤酒酵母菌中.国外已开展这方面的研究[2,3],本研究组曾用随机克隆的方法获得了枯草芽孢杆菌a-ALDC基因[4],本文报道了枯草芽孢杆菌ALDC基因在工业用啤酒酵母中的表达研究结果.  相似文献   

9.
酵母菌絮凝机理研究进展及应用前景   总被引:15,自引:1,他引:15  
张博润  任健  刘玉方   《微生物学通报》1996,23(5):307-311
酵母菌絮凝机理研究进展及应用前景张博润,任健,刘玉方(中国科学院微生物研究所,北京100080)近十年来,酵母絮凝机理的研究日益受到重视,这主要是由于絮凝是发酵工业,如啤酒酿造、酒精发酵和单细胞蛋白生产中使用的酵母菌的一个重要特性。酵母的絮凝对产品的...  相似文献   

10.
以朝阳啤酒厂的啤酒酵母菌CY3为出发菌株,在分离培养基中加入0.1%土霉素溶液,以发酵液中双乙酰含量为主要测定指标,同时测定发酵度、发酵速度、死灭温度、凝聚性等指标,从而筛选出1株优良啤酒酵母菌。  相似文献   

11.
1986年在大阪召开的大阪发酵工程学年会上,三得利啤酒公司应用微生物研究所和酒类研究所发表了一项研究成果。用DNA组入染色体的方法选育成功稳定的基因重组酵母菌。将根霉的葡糖淀粉酶基因组入乙醇发酵能力接近于生产菌的酵母菌中,使其分泌产生葡糖淀粉酶,而无需加热处理(无蒸煮)就能由淀粉产生13%以上的乙醇。特别在用木薯淀粉为原料时分解率很高。转化为乙醇的产率与现行工业生产法相同。为使染色体中重组性能稳定,从小瓶到大容器重组体经数十代仍可稳定产生葡糖淀粉酶。 此重组体有可能在良好的通用发酵罐中实现工业化。该公司已实现用根霉的葡糖淀粉酶进行淀粉的无蒸煮乙醇生产,这种方法由淀粉产乙醇的能耗量约减少了三成。  相似文献   

12.
优良啤酒酵母原生质体融合株GR5的构建及其发酵特性   总被引:5,自引:0,他引:5  
以发酵度较高的非絮凝性的啤酒酵母菌株X6和发酵度较低、絮凝性较强的啤酒酵母菌株N1为亲本进行原生质体融合。用亚硝酸诱变原养型的菌株X6,经筛选得到一株需酪素水解物的营养缺陷型菌株X6~20。采用正交试验法分别优化菌株X6~20和N1的原生质体形成和再生的条件。用X6~20菌株的原生质体作为受体和热灭活的N1菌株原生质体作为供体进行融合。融合株经三角瓶发酵筛选,得到一株较优良的融合株GR5。该融合株的絮凝性较强(本斯值为2.7),以12°Bx麦芽汁为培养基,用500 L的发酵罐在12℃下发酵,发酵至第8 d菌株GR5的发酵度为69.2%,发酵液中的双乙酰含量为0.0498 mg/L、乙醛含量为6.34 mg/L,总高级醇含量为74.4mg/L。融合株GR5具有双亲的优点,发酵的啤酒风味较好,是一株具有工业应用前景的啤酒酿造酵母菌株。  相似文献   

13.
在生产条件下,对酵母菌在红葡萄酒酒精发酵串罐过程中的稳定性进行了研究。结果表明,在近1个月的时间内(相当于酵母菌细胞无性繁殖了200代),串罐过程中的酵母菌细胞不仅能保持初始酵母菌的发酵活性和优良特性的稳定性,而且由于葡萄汁的选择作用,串罐用的酵母菌细胞的发酵活性比初始酵母菌的活性更强,因而其酒精发酵的启动和速度都更快。  相似文献   

14.
利用枯草芽胞杆菌 ,以玉米废渣为原料发酵生产饲用微生物添加剂 ,结果发酵产品的活菌数为 1.76× 10 1 1 个 /kg,粗蛋白质含量为 5 2 % ,比原料的粗蛋白质含量提高了 2 8% ;用均匀设计的方法设计四种酵母菌混合发酵模式 ,以啤酒糟为原料 ,生产饲用微生物添加剂 ,结果四种酵母菌的最佳接种量比例为 :酿酒酵母 :红酵母 :热带假丝酵母 :白地霉 =5 :0 :0 :5 ;发酵产品的最高活菌数为 2 .77× 10 1 1个 /kg,最高粗蛋白含量为 6 2 .81%。  相似文献   

15.
本文应用全谱线氩离子激光辐照啤酒酵母菌,然后进行细胞培养啤酒发酵试验,並做多项生物效应的测定。结果表明:酵母细胞的出芽率、生长速度、代谢产物乙醇的产量、付产物双乙酰的含量以及有关酶类的活力均发生了变化。对于提高啤酒发酵的产量和改善啤酒的风味极为有利。  相似文献   

16.
刘春凤  赵云  李崎  王金晶  钮成拓  王林祥 《菌物学报》2018,37(11):1411-1423
啤酒酵母是啤酒酿造的核心,对啤酒风味及风味稳定性具有重要影响。乙醛是影响啤酒风味和风味稳定性最重要的醛类化合物,是酒精饮料中引起人类致癌的物质之一,主要通过啤酒酵母的生物代谢产生,存在于啤酒发酵过程及成品啤酒中。因此,筛选或选育优良的低产乙醛啤酒酵母菌株将成为有效解决啤酒风味稳定性的途径之一。近年来,随着基因工程技术的发展及啤酒酵母基因组的不断阐明,人们对啤酒酵母菌种改良展开了大量的研究,以期解决啤酒酿造问题,改善啤酒质量。本文对采用传统方式及基因工程手段选育低产乙醛啤酒酵母的最新研究进展进行了综述。其中,对低乙醛啤酒酵母选育的手段及策略进行了讨论并对低乙醛啤酒酵母选育的研究热点及发展趋势进行了展望。  相似文献   

17.
利用海藻酸钠固定化酿酒酵母细胞和流化床生物反应器进行介质循环发酵。反应器中固定化胶体最适体积分数(φ)为O.40(v/v)。在给定固定化胶体体积分数(φ=O.40),给定发酵温度(10℃)和循环比(n=5)的条件下,研究了循环流速对主发酵周期和对嫩啤酒双乙酰水平的影响。结果表明,发酵周期随流速的增加而减少,而双乙酰浓度则随流速的增加而提高。当停留时间τt=2.8h,发酵周期T(=nτ r)为14h,嫩啤酒中双乙酰浓度为0.5ppm。  相似文献   

18.
利用海藻酸钠固定化酿酒酵母细胞和流化床生物反应器进行介质循环发酵。反应器中固定化胶体最适体积分数(φ)为O.40(v/v)。在给定固定化胶体体积分数(φ=O.40),给定发酵温度(10℃)和循环比(n=5)的条件下,研究了循环流速对主发酵周期和对嫩啤酒双乙酰水平的影响。结果表明,发酵周期随流速的增加而减少,而双乙酰浓度则随流速的增加而提高。当停留时间τt=2.8h,发酵周期T(=nτ r)为14h,嫩啤酒中双乙酰浓度为0.5ppm。  相似文献   

19.
固定化对酵母细胞发酵产ATP能力的影响   总被引:1,自引:0,他引:1  
通过试验对酵母菌细胞的固定化方法及固定化酵母细胞在发酵生产ATP方面的应用进行了探讨。综合固定化颗粒的性能指标(粒径、弹性和机械强度)和发酵产ATP的能力,通过正交试验对酵母菌细胞的包埋条件进行了优化,确定了固定化酵母细胞的较优组合为聚乙烯醇3.5%、海藻酸钠2%、CaCl23%及交联时间6h,发酵后ATP含量最高,达到0.716g/L。进一步发酵条件的试验证实,固定化能提高酵母菌细胞对温度适应范围,延长发酵生产周期,从而提高菌体的利用率。  相似文献   

20.
据浙江科技报报导,浙江省轻工业研究所在浙江大学数学系与浙江镇海啤酒厂等单位的协作下,对啤酒生产中的糖化,发酵等主要生产工艺进行了非生物稳定性(防止啤酒混浊)和泡沫持久性的研究,并采用20余个因素的正交试验设计、回归分析,采用最优化方法,经微机处理,得到提高啤酒质量的新工艺。镇海啤酒厂使用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号