首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varying degrees of mitochondrial DNA (mtDNA) heteroplasmy have been observed in nuclear transfer embryos, fetuses, and offspring, but the mechanisms leading to this condition are unknown. We have generated a clone of 12 bovine somatic cell nuclear transfer fetuses, using nuclear donor cells, recipient oocytes, and recipient heifers with defined mtDNA genotypes, to study nuclear-mitochondrial interactions and the origins of mtDNA heteroplasmy. Embryos were reconstructed from granulosa cells with Bos taurus mtDNA type A and recipient oocytes collected from three different maternal lineages with B. taurus mtDNA type B, B. taurus mtDNA type C, or B. indicus mtDNA. Sequence differences in the control region (CR) of B. taurus mtDNAs ranged from 6 to 11 nucleotides and differences between B. taurus and B. indicus CRs from 45 to 50 nucleotides. Fetuses were recovered from recipient heifers with B. taurus mtDNA type B on Day 80 after nuclear transfer (eight B. taurus A/B, two B. taurus A/C, and two B. taurus A/B. indicus). Agarose gel analysis of the CR by polymerase chain reaction-based restriction fragment length polymorphism failed to detect nuclear donor mtDNA in 11 investigated tissues of 10 viable fetuses and in DNA samples of two fetuses in resorption (one B. taurus A/B and one B. taurus A/C). A more sensitive analysis of 1801 plasmid clones with CR inserts derived from tissues of a B. taurus A/B. indicus fetus detected no or very low levels of heteroplasmy (0.5-0.7%). However, the analyses detected considerable amounts ( approximately 2.5% and 5%) of recipient heifer mtDNA in blood samples from two fetuses. Our data do not suggest a replicative advantage of somatic nuclear donor cell mtDNA in bovine transmitochondrial clones produced with oocytes from domestic forms of the same or a different aurochs (B. primigenius) subspecies. Detection of mtDNA from the recipient animal in the circulation of two fetuses points to leakage of the placental barrier, mimicking heteroplasmy.  相似文献   

2.
The taurine and zebuine cattle breeds comprise the majority of the world cattle population but their taxonomic status is still controversial. The two forms of cattle are currently classified as Bos taurus and Bos indicus species and are differentiated primarily by the presence or absence of a hump. However, these two species hybridize readily, producing fully fertile offspring. We have determined and analyzed complete B. taurus and B. indicus mitochondrial genome sequences to investigate the extent of sequence divergences and to study their taxonomic status by molecular dating. The sequences encompassed 16,338 and 16,339 nucleotides, respectively, and differed at 237 positions. Estimated divergence times indicated that the two cattle lineages separated 1.7-2.0 million years ago. Combined phylogenetic analyses of 18 new and 130 previously reported extant B. taurus and B. indicus control region sequences with data from 32 archaeological specimens of the extinct wild aurochs (Bos primigenius) identified four major maternal lineages. B. primigenius haplotypes were present in all but the B. indicus lineage, and one B. taurus sequence clustered with B. primigenius P haplotypes that were not previously linked with domestic cattle. The B. indicus cluster and a recently reported new B. primigenius haplotype that represents a new lineage were approximately equidistant from the B. taurus cluster. These data suggest domestications from several differentiated populations of B. primigenius and a subspecies status for taurine (B. primigenius taurus) and zebuine (B. primigenius indicus) cattle.  相似文献   

3.
We investigated the mitochondrial DNA (mtDNA) composition in one of the largest adult somatic mammalian clones (n = 20) reported so far. The healthy cloned cattle were derived from nuclear transfer of an identical nuclear genetic background (mural granulosa donor cells including surrounding cytoplasm) into enucleated oocytes with either Bos indicus or B. taurus mtDNA. Here we report the first cases of coexisting mtDNAs of two closely related subspecies following nuclear transfer. Heteroplasmy (0.6-2.8%) was found in 4 out of 11 cross-subspecies cloned cattle. Quantitation was performed using "amplification refractory mutation system (ARMS) allele-specific real-time PCR." We determined that the ratio of donor cell to recipient cytoplast mtDNA copy number was 0.9% before nuclear transfer. Therefore, we concluded that the percentage of donor cell mtDNA in the heteroplasmic intersubspecific cloned animals is in accordance with neutral transmission of donor mtDNA. We determined an amino acid sequence divergence of up to 1.3% for the two subspecies-specific mtDNA haplotypes. In addition, intrasubspecific B. indicus heteroplasmy of approximately 1% (but up to 7.3 and 12.7% in muscle and follicular cells of one animal) was detected in 7 out of the 9 B. indicus intrasubspecific cloned cattle.  相似文献   

4.
In vitro studies have shown that Bos taurus indicus (B. t. indicus) embryos submitted to heat shock at early stages of development are better able to survive as compared to Bos taurus taurus embryos. Embryo genotype influences resistance to heat shock thus leading to the question as to whether embryos sired by thermo-tolerant breeds exhibit the same resistance to heat shock. In the present study the influence of both oocyte and semen, on the resistance to heat shock (HS) at early stages of in vitro development, was assessed in B. t. indicus [Nelore (N) breed], B. t. taurus [Holstein (H) and Angus (A) breeds] and crossbreds. In Experiment 1, Nelore and crossbred oocytes were collected from slaughterhouse ovaries and fertilized with spermatozoa from Nelore and Angus bulls. Presumptive embryos were collected and randomly assigned to control (39 degrees C) or HS at 12, 48 or 96 h post insemination (hpi; 41 degrees C for 12h) treatments. The cleavage rates and proportion of embryos developing to the blastocyst and hatched blastocyst stages were recorded on Days 2, 8 and 10, respectively. Heat shock treatment decreased development of both Nelore and crossbred embryos. There was a significant interaction between time (12, 48 or 96 hpi) and temperature for blastocyst rates, i.e., the embryos became more thermotolerant as development proceeded. In Experiment 2, oocytes from Nelore and Holstein cows were fertilized with semen from bulls of either Nelore or Angus breeds, and subjected to 12 h HS at 96 hpi. Heat shock at 96 hpi, decreased embryo development. Additionally, cowxtreatment and bullxtreatment interactions were significant for blastocyst rates, i.e., both breed of cow and breed of bull affected the decline in blastocyst rate caused by heat shock treatment. In conclusion, the present results indicate that Nelore embryos (indicus) are more resistant to heat shock than Holstein (taurus) at early stages of in vitro development, and that embryos become more thermo-tolerant as development proceeds. Additionally, the resistance to heat shock was a result of the genetic contribution from both oocyte and spermatozoa.  相似文献   

5.
In the process of nuclear transfer, heteroplasmic sources of mitochondrial DNA from a donor cell and a recipient oocyte are mixed in the cytoplasm of the reconstituted embryo. The distribution of mitochondrial DNA heteroplasmy in nuclear transfer bovine embryos and resultant offspring was investigated by measuring polymorphism in the displacement loop region of mitochondrial DNA using PCR-mediated single-strand conformation polymorphism. Most offspring (20 of 21 calves) from recipient oocytes of undefined mitochondrial DNA genotypes showed different genotypes from the mitochondrial DNA of donor cells. The single calf that was an exception showed heteroplasmy, including the donor mitochondrial DNA genotype. Six cloned calves were produced from oocytes of a defined mitochondrial DNA genotype. All of these clonal members and various tissues showed only the mitochondrial DNA genotype derived from the oocyte. The mitochondrial DNA from donor cells appeared to be eliminated during early embryonic development; it gradually decreased at the early cleavage stages and was hardly detectable by the blastocyst stage. These results indicate that the genotype of mitochondrial DNA from recipient oocytes may become the dominant category of mitochondrial DNA in calves resulting from nuclear transfer.  相似文献   

6.
Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.  相似文献   

7.
Cloned mammals are readily obtained by nuclear transfer using cultured somatic cells; however, the rate of generating live offspring from the reconstructed embryos remains low. In nuclear transfer procedures, varying quantities of donor cell mitochondria are transferred with nuclei into recipient oocytes, and mitochondrial heteroplasmy has been observed. A mouse model was used to examine whether transferred mitochondria affect the development of the reconstructed oocytes. Cytoplasm or purified mitochondria from somatic cells derived from the external ear, skeletal muscle, and testis of Mus spretus mice or cumulus cells of Mus musculus domesticus mice were transferred into M. m. domesticus (B6SJLF1 and B6D2F1) oocytes to observe parthenogenetic development through the morula stage. All B6D2F1 oocytes injected with somatic cytoplasm or mitochondria showed delayed development when compared to oocytes injected with buffer. The developmental rates were not different among injected cell sources, with the exception of testis-derived donor cells injected into B6SJLF1 oocytes (P < 0.01). The developmental rate of B6D2F1 oocytes injected with buffer alone (98.8% survival) was different from those injected with somatic cytoplasm (60.8% survival) or somatic mitochondria (56.5% survival) (P < 0.01). Conversely, injection of ooplasm into B6D2F1 oocytes did not affect parthenogenetic development (100% survival). Our results indicate that injection of somatic cytoplasm or mitochondria affected parthenogenetic development of murine oocytes. These results have further implications for in vitro fertilization protocols employing ooplasmic transfer where primary oocyte failure is not confirmed.  相似文献   

8.
Superovulation and embryo transfer in Bos indicus cattle   总被引:1,自引:0,他引:1  
Compared to Bos taurus breeds, Bos indicus breeds of cattle present several differences in reproductive physiology. Follicular diameter at deviation and at the time of ovulatory capability are smaller in B. indicus breeds. Furthermore, B. indicus breeds have a greater sensitivity to gonadotropins, a shorter duration of estrus, and more often express estrus during the night. These differences must be considered when setting up embryo transfer programs for B. indicus cattle. In recent studies, we evaluated follicular dynamics and superovulatory responses in B. indicus donors with the objective of implementing fixed-time AI protocols in superstimulated donors. Protocols using estradiol and progesterone/progestrogen releasing devices to control follicular wave emergence were as efficacious as in B. taurus cattle, allowing the initiation of superstimulatory treatments (with lower dosages of FSH than in B. taurus donors) at a self-appointed time. Furthermore, results presented herein indicate that delaying the removal of progesterone/progestogen-releasing devices, combined with the administration of GnRH or pLH 12 h after the last FSH injection, results in synchronous ovulations, permitting the application of fixed-time AI of donors without the necessity of estrus detection and without compromising the results.  相似文献   

9.
Reproductive cycles in Bos indicus cattle   总被引:1,自引:0,他引:1  
Several studies using transrectal ovarian ultrasonic scanning in Bos taurus (B. taurus) cattle and more recently in Bos indicus (B. Indicus) females evaluated the reproductive cycles of heifers and cows under different conditions. In general, B. indicus cattle have more follicles and more follicular waves during the estrous cycle and ovulate from smaller follicles than B. taurus. Consequently B. indicus females have smaller corpora lutea and it is assumed circulating concentrations of estradiol and progesterone are also less. However, these findings may vary depending on the nutritional status and regimen in which the animals are managed. Moreover, there are significant differences between B. taurus and B. indicus regarding follicle size at the time of deviation of the dominant follicle. These differences in ovarian function between B. indicus and B. taurus, e.g. greater antral follicle population are, probably, the main reasons for the great success of in vitro embryo production programs in Zebu cattle, especially in Brazil.  相似文献   

10.
We generated a clone of bovine somatic cell nuclear transfer embryos using oocyte pools from defined maternal sources to study nuclear-cytoplasmic interactions. Nucleocytoplasmic hybrids were reconstructed with Bos taurus (Brown Swiss) granulosa cells and oocytes that contained B. taurus A (Simmental), B. taurus B (Simmental), or Bos indicus (Dwarf Zebu) cytoplasm. Another set of embryos was reconstructed with randomly selected Brown Swiss (B. taurus R) oocytes. Embryo transfer resulted in nine (12.5%), nine (13.8%), three (50%), and 11 (16.7%) Day 80 fetuses, of which eight (11.1%), three (4.6%), three (50%), and 10 (15.2%) were viable, respectively. The proportion of viable fetuses was affected by cytoplasm (likelihood ratio test, P < 0.02) and was higher for embryos with B. indicus cytoplasm than for the B. taurus A (P < 0.05) and B (P < 0.01) groups. Furthermore, the proportion of surviving Day 80 fetuses was reduced for B. taurus B as compared with B. taurus A and B. taurus R cytoplasm (P < 0.05 and P < 0.02). Body weight of nucleocytoplasmic hybrid fetuses was not significantly different from Brown Swiss control fetuses produced by artificial insemination (AI), but fetuses reconstructed with random cytoplasts of the same breed as the nuclear donor exhibited overgrowth (P < 0.01) and a higher coefficient of variation in weight. Furthermore, body weight, crown rump length, thorax circumference (P < 0.05), and femur length (P < 0.01) of fetuses with B. taurus A cytoplasm differed from fetuses with B. taurus R cytoplasms. Fetal skin, heart, and liver cells with B. indicus cytoplasm showed a greater increase in number per time period (P < 0.001) and oxygen consumption rate per cell (skin and liver, P < 0.001; heart, P < 0.08) in comparison with their counterparts with B. taurus A cytoplasm. These data point to complex oocyte cytoplasm-dependent epigenetic modifications and/or nuclear DNA-mitochondrial DNA interactions with relevance to nuclear transfer and other reproductive technologies such as ooplasmic transfer in human assisted reproduction.  相似文献   

11.
12.
Interspecies cloning might be used as an effective method to conserve endangered species and to support the study of nuclear-cytoplasm interaction. In this study, we describe the development of takin-bovine embryos in vitro produced by fusing takin ear fibroblasts with enucleated bovine oocytes and examine the fate of mitochondrial DNA in these embryos. We also compare the blastocyst development of takin-bovine embryos with yak-bovine and bovine-bovine embryos and compare the cell numbers of the blastocyst. Our results indicate that: (1) takin-bovine cloned embryos can develop to the blastocyst stage in vitro (5%), (2) blastocyst mitochondria DNA are derived primarily from bovine oocytes in spite of a little takin donor cell mitochondrial DNA, (3) using the same cloned protocol, development efficiency is significantly different between bovine-bovine cloning, yak-bovine, and takin-bovine cloning (48 vs. 28% vs. 5%, P < 0.01), and (4) cell numbers in the blastocysts of the three species of embryos were not different. These results suggest that the bovine oocytes can reprogram the takin, yak, and bovine fibroblast nuclei. However, the development efficiency of intra-species cloning tends to be higher than inter-species cloning; the more close the species of the donor cell is to the recipient oocyte (yak versus takin), the greater the blastocyst development in vitro.  相似文献   

13.
Mitochondria are endosymbiotic organelles responsible for energy production in practically every eukaryotic cell. Their uniparental fashion of inheritance, maternally inherited in mammals, and the homogeneity of mitochondrial DNA (mtDNA) within individuals and matrilineages, are biological phenomena that remain unexplained. This paper reviews some of the recent findings on mitochondrial influences on the manner in which embryos develop and how their genotypes are inherited in mammals, with particular emphasis on the genetic "bottleneck" effect. Animal models carrying a mix of mtDNAs (heteroplasmic) have been produced by karyoplast and cytoplast transplantation to analyze the segregation patterns at different stages during embryogenesis, in fetuses and offspring. Comparisons performed between murine and bovine reveal interesting changes in segregation and replication of transplanted mtDNAs. We have recently obtained Bos indicus and Bos taurus fetuses and calves from embryos reconstructed using enucleated polymorphic oocytes of Bos taurus origin. These and other findings on mitochondrial biology will have important implications in determining the cytoplasmic genotype of clones and in the preservation of endangered breeds and species.  相似文献   

14.
The aim of the present study was to evaluate the effect of age on embryogenic competence of oocytes recovered from Bos indicus crossbred calves and heifers. Cumulus-oocyte complexes (COCs) were collected from 4- to 7-month-old calves (experiment 1) and from 9- to 14-month-old heifers (experiment 2) during processing at an abattoir. In both experiments cow COCs were used as control. COCs were in vitro matured and fertilized, and the presumptive zygotes co-cultured with cumulus cells until 224 h post insemination (hpi). In experiment 1, the development rate during the first 68-72 hpi was similar (P > 0.05) between embryos derived from calves and cows. Fewer embryos from calves developed to the blastocyst stage, resulting in a lesser blastocyst production as well as lesser hatching rate (P < 0.05). The embryo development after blastocyst stage was, nevertheless, similar (P > 0.05) between blastocysts derived from calves and cows, suggesting that the development after blastocoele formation is not compromised in embryos derived from calves. In experiment 2, there were no differences (P > 0.05) on cleavage, blastocyst and hatching rates between embryos derived from prepubertal heifers and cows. The rate of blastocyst development until hatching was also similar (P > 0.05). These results indicate that oocytes from 9- to 14-month-old B. indicus crossbred heifers have the same developmental competence as oocytes derived from cows, while ocytes derived from 4- to 7-month-old B. indicus crossbred calves are less competent in developing to the blastocyst stage in vitro. It suggests that oocyte competence in B. indicus crossbred cattle is achieved around 9-14 months of age.  相似文献   

15.
Pattern and manipulation of follicular development in Bos indicus cattle   总被引:1,自引:0,他引:1  
Bos indicus cattle are widespread in tropical regions due to their adaptation to these environments. Although data on reproductive performance have indicated both inferior and superior results for B. indicus cattle, there is little doubt that B. indicus cattle are superior than Bos taurus cattle when they are both kept in tropical or subtropical environments, where stressors like hot temperatures, humidity, ectoparasites and low quality forages are greater. Reproductive endocrinology and oestrus behaviour of the B. indicus cattle have been studied for over 30 years; however, the application of technologies such as real time ultrasonography and Heat-Watch systems has expanded our knowledge on the ovarian follicular-wave dynamics during the oestrous cycle and the time of ovulation. Ovarian follicular dynamics in B. indicus cattle is characterised by the occurrence of two, three or sometimes four waves of follicular development. While dominance is similar to that in B. taurus cattle, maximum diameters of the dominant follicle and CL are smaller than those reported in B. taurus and are probably due to a lower capacity for LH secretion than in B. taurus. Duration of oestrus is approximately 10 h and the interval from oestrus to ovulation is about 27 h. However, the variability in response to prostaglandin F2alpha (PGF) treatments and the difficulty for oestrus detection in B. indicus cattle have limited the widespread application of artificial insemination (AI) and emphasizes the need for treatments that control follicular development and ovulation. Follicular-wave development in B. indicus cattle can be controlled mechanically by ultrasound-guided follicle ablation, or hormonally by treatments with GnRH or oestradiol and progestogen/progesterone in combination. Treatments with GnRH plus PGF and a second GnRH (synchronization protocol known as Ovsynch) or oestradiol benzoate (known as GPE) have resulted in acceptable pregnancy rates after fixed-time AI (FTAI) in cycling cows, but results were lower in heifers and cows in postpartum anoestrus. Alternatively, treatments with oestradiol and progestogen/progesterone releasing devices resulted in synchronous emergence of a new follicular wave, and a second oestradiol or GnRH treatment after device removal resulted in synchronous ovulation and acceptable pregnancy rates to FTAI. Furthermore, oestradiol and progesterone treatments combined with eCG (given at the time of device removal) increased pregnancy rates in suckled B. indicus cows and may be useful for the treatment of cows in postpartum anoestrus. In summary, exogenous control of luteal and follicular development facilitates the application of assisted reproductive technologies in B. indicus cattle by offering the possibility of planning AI programs without the necessity of oestrus detection and without sacrificing the overall results.  相似文献   

16.
Microinjection of isolated mitochondria into oocytes is an effective method to introduce exogenous mitochondrial DNA. In nuclear transfer procedures in which donor cell mitochondria are transferred with nuclei into recipient oocytes; development and survival rates of reconstructed embryos may be also directly influenced by mitochondrial viability. Mitochondrial viability is dramatically affected by cell culture conditions, such as serum starvation prior to nuclear transfer. This study was conducted to examine the influence of exogenous mitochondria using bovine and mouse parthenogenetic models. Mitochondria were isolated from primary cells at confluency and after serum starvation. The bovine oocytes injected with serum-starved mitochondria showed lower rates of morula and blastocyst formation when compared to uninjected controls (P < 0.05). However, the developmental rates between non-starved mitochondria injection and controls were not different (P > 0.05). The murine oocytes injected with serum-starved mitochondria showed lower rates of development when compared with non-starved mitochondria and controls (P < 0.01). In contrast to mitochondria transfer, ooplasm transfer did not affect murine or bovine parthenogenetic development (P > 0.05). The overall results showed that injection of serum-starved mitochondria influenced parthenogenetic development of both bovine and murine oocytes. Our results illustrate that the somatic mitochondria introduction accompanying nuclei has the capacity to affect reconstructed embryo development; particularly when using serum-starved cells as donor cells.  相似文献   

17.
The banteng (Bos javanicus), a member of the bovidae family, is currently listed as threatened by the IUCN Red List and it is estimated the total world population is <10,000 animals. In exotic or endangered species, the lack of oocytes and recipients precludes the use of traditional somatic cell nuclear transfer (NT), and an approach such as interspecies NT may be the only alternative to produce embryos and offspring. A total of 348 enucleated domestic bovine oocytes were reconstructed with either male (Treatment A) or female (Treatment B) adult banteng fibroblasts and a total of 103 bovine oocytes were parthenogenically activated as a control (Treatment C). There was no significant difference in fusion rate (68 versus 77%) between Treatments A and B. Of fused couplets, those in Treatment A had greater (P < 0.05) cleavage (67 versus 51%) and blastocyst (28 versus 15%) rate than Treatment B. Of a total of 24 blastocysts transferred into 12 domestic cattle recipients from Treatment A, two pregnancies (17%) were established with heart beats detectable at 30 day by rectal ultrasonography. No pregnancies resulted from the transfer of 14 blastocysts from Treatment B. Both pregnancies were subsequently lost, one between 30 and 60 days and the second between 60 and 90 days of gestation. The bovine cytoplast supported mitotic cleavage of banteng karyoplasts, and was capable of reprogramming the nucleus to achieve blastocyst stage embryos and pregnancies in exotic bovids.  相似文献   

18.
This article reports the nucleotide diversity within the control region of 42 mitochondrial chromosomes belonging to five South American native cattle breeds (Bos taurus). Analysis of these data in conjunction with B. taurus and B. indicus sequences from Africa, Europe, the Near East, India, and Japan allowed the recognition of eight new mitochondrial haplotypes and their relative positions in a phylogenetic network. The structure of genetic variation among different hypothetical groupings was tested through the molecular variance decomposition, which was best explained by haplotype group components. Haplotypes surveyed were classified as European-related and African-related. Unexpectedly, two haplotypes within the African cluster were more divergent from the African consensus than the latter from the European consensus. A neighbor-joining tree shows the position of two haplotypes compared to European/African mitochondrial lineage splitting. This different and putatively ancestral mitochondrial lineage (AA) is supported by the calibration of sequence divergence based on the Bos-Bison separation. The European/African mitochondria divergence might be subsequent (67,100 years before present) to that between AA and Africans (84,700 years before present), also preceding domestication times. These genetic data could reflect the haplotype distribution of Iberian cattle five centuries ago.  相似文献   

19.
Cattle in Africa are a genetically diverse population that has resulted from successive introduction of Asian Bos indicus and European B. taurus cattle. However, analysis of mitochondrial genetic diversity in African cattle identified three lineages, one associated with Asian B. indicus, one with European B. taurus, and a third ascribed to an indigenous African sub-species of cattle. Due to their extended coevolution, indigenous African herbivores are generally tolerant to endemic African pathogens. We are interested in identifying alleles derived from the indigenous African cattle that may be associated with tolerance to African pathogens. An analysis of the locus which encodes the abundant plasma membrane-associated tyrosine phosphatase, CD45, identified three highly divergent allelic families in Kenya Boran cattle. Analysis of allelic distribution in a diverse range of cattle populations suggests a European B. taurus, an Asian B. indicus, and an African origin. This demonstrates not only significant allelic polymorphism at the CD45 locus in cattle but also convincing autosomal evidence for a distinct African sub-species of cattle. Furthermore, maximum-likelihood analysis of selection pressures revealed that the CD45 locus is subject to exceptionally strong natural selection which we suggest may be pathogen driven.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号