首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Protein disulphide-isomerase and glutathione-insulin transhydrogenase activities were assayed in parallel through a conventional purification of protein disulphide-isomerase from ox liver. 2. Throughout a series of purification steps (differential centrifugation, acetone extraction, (NH4)2SO4 precipitation and ion-exchange chromatography), the two activities appeared in the same fractions but were purified to different extents. 3. The final sample was 143-fold purified in protein disulphide-isomerase but only 10-fold purified in glutathione-insulin transhydrogenase; nevertheless the two activities in this preparation were not resolved by high-resolution isoelectric focusing and both showed pI4.65. 4. In a partially purified preparation containing both activities, glutathione-insulin transhydrogenase was far more sensitive to heat denaturation than was protein disulphide-isomerase; conversely protein disulphide-isomerase was more sensitive to inactivation by deoxycholate. 5. The data are inconsistent with a single enzyme being responsible for all the protein disulphide-isomerase and glutathione-insulin transhydrogenase activity of ox liver. It is suggested that several similiar thiol-protein disulphide oxidoreductases of overlapping specificities may better account for the data.  相似文献   

2.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

3.
1. Protein disulphide-isomerase (EC 5.3.4.1) and glutathione-insulin transhydrogenase (EC 1.8.4.2) were resolved by covalent chromatography. Both activities, in a partially purified preparation from bovine liver, bind covalently as mixed disulphides to activated thiopropyl-Sepharose 6B, in a new stepwise elution procedure protein disulphide-isomerase is displaced in mildly reducing conditions whereas glutathione-insulin transhydrogenase is only displaced by more extreme reducing conditions. 2. This together with evidence for partial resolution of the two activities by ion-exchange chromatography, conclusively establishes that the two activities are not alternative activities of a single bovine liver enzyme. 3. Protein disulphide-isomerase, partially purified by a published procedure, has now been further purified by covalent chromatography and ion-exchange chromatography. The final material is 560-fold purified relative to a bovine liver homogenate; it has barely detectable glutathione-insulin transhydrogenase activity. 4. The purified protein disulphide-isomerase shows a single major band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis corresponding to a mol.wt. of 57000. 5. The purified protein disulphide-isomerase has Km values for 'scrambled' ribonuclease and dithiothreitol of 23 microgram/ml and 5.4 microM respectively and has a sharp pH optimum at 7.5. The enzyme has a broad thiol-specificity, and several monothiols, at 1mM, can replace dithiothreitol. 6. The purified protein disulphide-isomerase is completely inactivated after incubation with a 2-3 fold molar excess of iodoacetate. The enzyme is also significantly inhibited by low concentrations of Cd2+ ions. These findings strongly suggest the existence of a vicinal dithiol group essential for enzyme activity. 7. When a range of thiols were used as co-substrates for protein disulphide-isomerase activity, the activities were found to co-purify quantitatively, implying the presence of a single protein disulphide-isomerase of broad thiol-specificity. Glutathione-disulphide transhydrogenase activities, assayed with a range of disulphide compounds, did not co-purify quantitatively.  相似文献   

4.
Homogenate preparations of pancreatic islets have been found to degrade insulin by cleavage of the interchain disulfide bonds, followed by proteolysis of the resulting A and B chains. A proteolytic system of the pancreatic islets splitting not only 125I-labeled insulin A chain but also 125I-labeled glucagon at pH 7.0, was shown to be activated by glutathione and inhibited by EDTA. The results suggest that pancreatic islets contain both the thiol-protein disulfide oxidoreductase (glutathione : protein-disulfide oxidoreductase, EC 1.8.4.2) and the A and B chain-degrading enzyme(s). The effects of EDTA argue against the implication of cathepsins in insulin breakdown under the experimental conditions employed.  相似文献   

5.
Homogenate preparations of pancreatic islets have been found to degrade insulin by cleavage of the interchain disulfide bonds, followed by proteolysis of the resulting A and B chains. A proteolytic system of the pancreatic islets splitting not only 1 2 5I-labeled insulin A chain but also 1 2 5I-labeled glucagon at pH 7.0, was shown to be activated by glutathione and inhibited by EDTA. The results suggest that pancreatic islets contain both the thiol-protein disulfide oxidoreductase (glutathione : protein-disulfide oxidoreductase, EC 1.8.4.2) and the A and B chain-degrading enzyme(s). The effects of EDTA argue against the implication of cathepsins in insulin breakdown under the experimental conditions employed.  相似文献   

6.
7.
8.
Glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) inactivates insulin by cleaving its disulfide bonds. The distribution of GSH-insulin transhydrogenase in subcellular fractions of rat liver homogenates has been studied. From the distribution of insulin-degrading activity and marker enzymes (glucose-6-phosphatase and succinate-INT reductase) (INT, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) after cell fractionation by differential centrifugation, the immunological analysis of the isolated subcellular fractions with antibody to purified rat liver GSH-insulin transhydrogenase, and chromatographic analysis (on a column of Sephadex G-75 in 50% acetic acid) of the products formed from 125I-labelled insulin after incubation with the isolated subcellular fractions, it is concluded that GSH-insulin transhydrogenase is located primarily in the microsomal fraction of rat liver homogenate. An enzyme(s) that further degrades insulin by proteolysis is located mainly in the soluble fraction; a significant amount of the protease(s) activity is also present in the mitochondrial fraction. The possibility has been discussed that the protease(s) acts upon the intermediate product of insulin degradation, A and B chains of insulin, rather than upon the intact insulin molecule itself.The GSH-insulin transhydrogenase in intact microsomes occurs in a latent state; it is readily released from the microsomal membrane and its activity is greatly increased by treatments which affect the lipoprotein membrane structure of microsomal vesicles. There include homogenization with a Polytron homogenizer, sonication, freezing and thawing, alkaline pH, the nonionic detergent Triton X-100, and phospholipases A and C.  相似文献   

9.
10.
The protein disulphide-bond isomerization activity of highly active homogeneous protein disulphide-isomerase (measured by re-activation of 'scrambled' ribonuclease) is enhanced by EDTA and by phosphate buffers. As shown for previous less-active preparations, the enzyme has a narrow pH optimum around pH 7.8 and requires the presence of either a dithiol or a thiol. The dithiol dithiothreitol is effective at concentrations 100-fold lower than the monothiols reduced glutathione and cysteamine. The enzyme follows Michaelis-Menten kinetics with respect to these substrates; Km values are 4,620 and 380 microM respectively. The enzyme shows apparent inhibition by high concentrations of thiol or dithiol compounds (greater than 10 X Km), but the effect is mainly on the extent of reaction, not the initial rate. This is interpreted as indicating the formation of significant amounts of reduced ribonuclease in these more reducing conditions. The purified enzyme will also catalyse net reduction of insulin disulphide bonds by reduced glutathione (i.e. it has thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase activity), but this requires considerably higher concentrations of enzyme and reduced glutathione than does the disulphide-isomerization activity. The Km for reduced glutathione in this reaction is an order of magnitude greater than that for the disulphide-isomerization activity, and the turnover number is considerably lower than that of other enzymes that can catalyse thiol-disulphide oxidoreduction. Conventional two-substrate steady-state analysis of the thiol:protein-disulphide oxidoreductase activity indicates that it follows a ternary-complex mechanism. The protein disulphide-isomerase and thiol:protein-disulphide oxidoreductase activities co-purify quantitatively through the final stages of purification, implying that a single protein species is responsible for both activities. It is concluded that previous preparations, from various sources, that have been referred to as protein disulphide-isomerase, disulphide-interchange enzyme, thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase are identical or homologous proteins. The assay, nomenclature and physiological role of this enzyme are discussed.  相似文献   

11.
125I-insulin was shown to be internalized in vivo to a discrete population of low-density membranes (ligandosomes), distinct from the Golgi, endoplasmic reticulum, plasma membrane, and lysosomes. However, analytical subcellular fractionation shows that glutathione-insulin transhydrogenase is localized to the endoplasmic reticulum. Measurement of the specific enzyme activity of glutathione-insulin transhydrogenase showed no differences between normal, diabetic, and hyperinsulinaemic rats. These results suggest that glutathione-insulin transhydrogenase is not directly involved in the subceltular processing of receptor-bound internalized insulin.  相似文献   

12.
The latency of rat liver microsomal protein disulphide-isomerase.   总被引:3,自引:1,他引:3       下载免费PDF全文
Protein disulphide-isomerase (PDI) activity was not detectable in freshly prepared rat liver microsomes (microsomal fraction), but became detectable after treatments that damage membrane integrity, e.g. sonication, detergent treatment or freezing and thawing. Maximum activity was detectable after sonication. Identical latency was observed in microsomes prepared by gel filtration and in those prepared by high-speed centrifugation. PDI activity was latent in all particulate subcellular fractions, but not latent in the high-speed supernatant. When all fractions were sonicated to expose total PDI activity, PDI was found at highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum. Washing of microsomes under various conditions that removed peripheral proteins and, in some cases, bound ribosomes did not remove significant quantities of PDI, nor did it affect the latency of PDI activity. Treatment of microsomes with proteinases, under conditions where the permeability barrier of the microsomal vesicles was maintained intact, did not inactivate PDI significantly or affect its latency. PDI was very readily solubilized from microsomal vesicles by low concentrations of detergents, which removed only a fraction of the total microsomal protein. In all these respects, PDI resembled nucleoside diphosphatase, a marker peripheral protein of the luminal surface of the endoplasmic reticulum, and differed from NADPH: cytochrome c reductase, a marker integral protein exposed at the cytoplasmic surface of the membrane. The data are compatible with a model in which PDI is loosely associated with the luminal surface of the endoplasmic reticulum, a location consistent with the proposed physiological role of the enzyme as catalyst of formation of native disulphide bonds in nascent and newly synthesized secretory proteins.  相似文献   

13.
The liver plasma membrane preparation devised by Neville (Biochim. Biophys. Acta, 154, 540 (1968) contains insulin-degrading activity. Examination by chromatography on Sephadex G-75 of the products formed from 125I-insulin upon incubation with plasma membrane showed the same products (A chain and B chain rich-A chain aggregate) as previously found with purified GSH-insulin transhydrogenase (GIT). In Ouchterlony double-diffusion experiments with antibody to purified rat liver GIT, plasma membrane gave a single precipitation band of identity with purified rat liver GIT. Thus, the insulin-degrading activity present in the plasma membrane preparation is indeed GIT.  相似文献   

14.
Rat liver thiol:protein-disulfide oxidoreductase/glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) was purified and found to give two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis. A monoclonal antibody was produced against this enzyme preparation and found to remove all the insulin degrading activity of purified preparations of the enzyme. This monoclonal antibody was also found to react with the two different forms of the enzyme observed on gel electrophoresis. These results suggest that glutathione-insulin transhydrogenase can exist in more than one state.  相似文献   

15.
Bovine liver fructokinase: purification and kinetic properties.   总被引:6,自引:0,他引:6  
F M Raushel  W W Cleland 《Biochemistry》1977,16(10):2169-2175
Fructokinase from beef liver has been purified 2300-fold by acid and heat treatment, ammonium sulfate fractionation, and chromatography on Sephadex G-100, DEAE- and CM-cellulose. The purified enzyme is homogeneous by all criteria examined, has a molecular weight of 56 000, and is a dimer of equal molecular weight subunits. The isoelectric point is 5.7. The Michaelis constant for activation by K+ is 15 mM, and the enzyme is also activated by Na+, Rb+, Cs+, NH4+, and TL+. The kinetic mechanism has been determined at pH 7.0, 25 degrees C. The initial velocity, product, and dead-end inhibition patterns for CrATP, CrADP, and 1-deoxy-D-fructose are consistent with a random kinetic mechanism with the formation of two dead-end complexes. Substrates for fructokinase include: D-fructose, L-sorbose, D-tagatose, D-psicose, D-xylulose, L-ribulose, D-sedoheptulose, L-galactoheptulose, D-mannoheptulose, 5-keto-D-fructose, D-ribose, 2,5-anhydro-D-mannitol, 2,5-anhydro-D-glucitol, 2,5-anhydro-D-mannose, 2,5-anhydro-D-lyxito.l, and D-ribono-gamma-lactone. 5-Thio-D-fructose was not a substate, but was a competitive inhibitor vs. D-fructose. Thus the minimum molecular for substrate activity seems to be (2R)-2-hydroxy-methyl-3,4-dihydroxytetrahydrofuran. The configuration of the substituents at carbons 3, 4, and 5 appears not to be critical, but the hydroxymethyl group must have the configuration corresponding to beta-D-(or alpha-L-) keto sugars. The anomeric hydroxyl on carbon 2 is not required (although it contributes to binding), and a wide variety of groups may be present at carbon 5.  相似文献   

16.
A two-step procedure is described for the purification of protein disulphide-isomerase (PDI). This procedure is based on the previous finding that the beta-subunit of the prolyl 4-hydroxylase tetramer (alpha 2 beta 2) is identical with PDI [Koivu, Myllylä, Helaakoski, Pihlajaniemi, Tasanen & Kivirikko (1987) J. Biol. Chem. 262, 6447-6449; Pihlajaniemi, Helaakoski, Tasanen, Myllylä, Huhtala, Koivu & Kivirikko (1987) EMBO J. 6, 643-649]. The procedure involves purification of the prolyl 4-hydroxylase tetramer by a simple affinity chromatography and subsequent isolation of the beta-subunit from the dissociated tetramer by ion-exchange chromatography.  相似文献   

17.
18.
A protein, present in bovine seminal plasma, initiates forward motility in immature, immotile caput spermatozoa that have been incubated with a cyclic AMP phosphodiesterase inhibitor. An improved motility assay was developed to study this process and the protein involved. This forward motility protein exhibits multiple forms when fractionated on the basis of charge or molecular weight. Molecular sieving in urea or sodium dodecyl sulfate and dithiothreitol results in a single peak of activity which will re-form the larger aggregates in the absence of these agents. The molecular weight of this monomeric motility protein, as estimated from molecular sieving under these dissociating conditions, is 37,500. The forward motility protein can be partially purified by heat treatment, gell chromatography in urea, and affinity chromatography on concanavalin A/agarose. Enzymatic treatments further suggest a glycoprotein nature, i.e. treatment with beta-galactosidase, neuraminidase, alpha-mannosidase, or galactose oxidase reduces its activity by 50%; treatment with trypsin completely abolishes forward motility protein activity. On the basis of concurrent studies on the activity, properties, and distribution of forward motility protein in bovine body fluids, it is suggested that this protein is involved in the development of the capacity for motility as sperm traverse the epididymis.  相似文献   

19.
Insulin degradation by glutathione-insulin transhydrogenase has been studied using three different assay procedures: the measurement of the change in insulin immunoreactivity; the formation of 5% trichloroacetic acid-soluble radioactivity from 125 I-labeled insulin and the formation of GSSG via coupling to the oxidation of NADPH with the use of glutathione reductase. The extent of reaction as measured by each assay was different, and the ratios between the assays were not constant with time. Kinetic experiments with the NADPH-coupled assay and the trichloroacetic acid assay yielded similar results: Line-weaver-Burke plots with insulin as variable and GSH as fixed substrate gave a set of straight, intersecting lines, and such plots with GSH as variable and insulin as fixed substrate were parabolic. Apparent Km values for insulin at 1 mM GSH were found to be quite similar by three assay techniques; however, the V values per unit of enzyme protein varied considerably with different procedures. The results are interpreted as indicating that immunoreactivity is lost after reduction of only one of the disulfide bonds of insulin whereas the two interchain disulfide linkages must be broken to produce the trichloroacetic acid-soluble A chain. The results of the NADPH-coupled assay suggest that all three disulfide bonds of insulin are possible substrates for the enzyme. The trichloroacetic acid precipitation assay seems to be the most practicable technique for general use because of the greater ease in performing large number of samples, precision and sensitivity.  相似文献   

20.
A purification procedure is reported for obtaining bovine liver dihydrofolate reductase in high yield and amounts of 100-200 mg. A key step in the procedure is the use of an affinity gel prepared by coupling pteroyl-L-lysine to Sepharose. The purified reductase has a specific activity of about 100 units/mg and is homogeneous as judged by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and titration with methotrexate. The products of the first step of Edman degradation indicated a minimum purity of 79%. The reductase has a molecular weight of about 21500 on the basis of amino acid composition and 22100 +/- 300 from equilibrium sedimentation. It is not inhibited by antiserum to the Streptococcus faecium reductase (isoenzyme 2). Unlike the reductase of many other vertebrate tissues, the bovine enzyme is inhibited by mercurials rather than activated and it has a single pH optimum at both low and high ionic strength. However, the position of the pH optimum is shifted and the activity increased by increasing ionic strength. Automatic Edman degradation has been used to determine 34 of the amino-terminal 37 amino acid residues. Considerable homology exists between this region and the corresponding regions of the reductase from S. faecium and from Escherichia coli. This strengthens the idea that this region contributes to the structure of the binding site for dihydrofolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号