首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Only a single superoxide dismutase (SodA) was detected in Bacillus subtilis, and growing cells of a sodA mutant exhibited paraquat sensitivity as well as a growth defect and reduced survival at an elevated temperature. However, the sodA mutation had no effect on the heat or hydrogen peroxide resistance of wild-type spores or spores lacking the two major DNA protective alpha/beta-type small, acid-soluble, spore proteins (termed alpha(-)beta(-) spores). Spores also had only a single catalase (KatX), as the two catalases found in growing cells (KatA and KatB) were absent. While a katA mutation greatly decreased the hydrogen peroxide resistance of growing cells, as found previously, katA, katB, and katX mutations had no effect on the heat or hydrogen peroxide resistance of wild-type or alpha(-)beta(-) spores. Inactivation of the mrgA gene, which codes for a DNA-binding protein that can protect growing cells against hydrogen peroxide, also had no effect on spore hydrogen peroxide resistance. Inactivation of genes coding for alkyl hydroperoxide reductase, which has been shown to decrease growing cell resistance to alkyl hydroperoxides, had no effect on spore resistance to such compounds or on spore resistance to heat and hydrogen peroxide. However, Western blot analysis showed that at least one alkyl hydroperoxide reductase subunit was present in spores. Together these results indicate that proteins that play a role in the resistance of growing cells to oxidizing agents play no role in spore resistance. A likely reason for this lack of a protective role for spore enzymes is the inactivity of enzymes within the dormant spore.  相似文献   

2.
Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.  相似文献   

3.
Tailing of survivor curves of clostridial spores heated in edible oils   总被引:1,自引:1,他引:0  
Tailing of survivor curves was observed for Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores heated whilst suspended in edible oils, but not for the same spores suspended in buffer (pH 7˙2) or mineral oil or for Bacillus cereus F4165/75 spores suspended in buffer or oils. The tailing cannot be ascribed to a genetic or developmental heterogeneity in the resistance of the spore population or to a heterogeneity of the treatment severity during heating. Heat adaptation due to the release of protective factor(s), to the selection for resistant spores or to the diffusion of oil constituents inside the spore protoplast to protect key molecules from heat denaturation was also ruled out. The tailing can be ascribed to spore clumping during the course of heating or to a heterogeneity in heat resistance of germination system(s) within spores, concurrently with the activation of a dormant germination system. It is probably caused by some oleic acid containing triglycerides.  相似文献   

4.
AIMS: To determine the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. METHODS AND RESULTS: Killing of spores of B. subtilis with hydrogen peroxide caused no release of dipicolinic acid (DPA) and hydrogen peroxide-killed spores were not appreciably sensitized for DPA release upon a subsequent heat treatment. Hydrogen peroxide-killed spores appeared to initiate germination normally, released DPA and hydrolysed significant amounts of their cortex. However, the germinated killed spores did not swell, did not accumulate ATP or reduced flavin mononucleotide and the cores of these germinated spores were not accessible to nucleic acid stains. CONCLUSIONS: These data indicate that treatment with hydrogen peroxide results in spores in which the core cannot swell properly during spore germination. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide further information on the mechanism of killing of spores of Bacillus species by hydrogen peroxide.  相似文献   

5.
We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those germinated at 600 MPa. Since small, acid-soluble proteins (SASPs) and dipicolinic acid (DPA) are known to be involved in spore resistance to UV light and hydrogen peroxide, we studied the fate of these compounds during pressure germination. DPA was released upon both low- and high-pressure germination, but SASP degradation, which normally accompanies nutrient-induced germination, occurred upon low-pressure germination but not upon high-pressure germination. These results adequately explain the UV and hydrogen peroxide resistance of spores germinated at 600 MPa. The resistance to pressure inactivation of 600-MPa-germinated spores could also, at least partly, be attributed to α/β-type SASPs, since mutants deficient in α/β-type SASPs were more sensitive to inactivation at 600 MPa. Further, germination at 100 MPa resulted in rapid ATP generation, as is the case in nutrient-induced germination, but no ATP was formed during germination at 600 MPa. These results suggest that spore germination can be initiated by low- and high-pressure treatments but is arrested at an early stage in the latter case. The implications for the use of high pressure as a preservation treatment are discussed.  相似文献   

6.
Role of DNA repair in Bacillus subtilis spore resistance.   总被引:10,自引:0,他引:10       下载免费PDF全文
Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore outgrowth. Hydrogen peroxide treatment of alpha-beta-spores did not result in induction of dinR- and rerA-lacZ but did cause induction of uvrC-lacZ during spore outgrowth. Spores of a recA mutant were approximately twofold more UV sensitive and approximately ninefold more sensitive to dry heat than were wild-type spores but were no more sensitive to wet heat and hydrogen peroxide. In contrast, alpha-beta- recA spores were significantly more sensitive than were alpha-beta- spores to all four treatments, as well as to desiccation. Surprisingly, RecA levels were quite low in dormant spores, but RecA was synthesized during spore outgrowth. Taken together, these data (i) are consistent with previous suggestions that some treatments (dry heat and UV with wild-type spores; desiccation, dry and wet heat, hydrogen peroxide, and UV with alpha-beta- spores) that kill spores do so in large part by causing DNA damage and (ii) indicate that repair of DNA damage during spore outgrowth is an important component of spore resistance to a number of treatments, as has been shown previously for UV.  相似文献   

7.
Comparative sporicidal effects of liquid chemical agents.   总被引:8,自引:4,他引:4       下载免费PDF全文
We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents.  相似文献   

8.
Dipicolinic acid (DPA) comprises approximately 10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective alpha/beta-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-gamma. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most alpha/beta-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to alpha/beta-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.  相似文献   

9.
B Setlow  P Setlow 《Applied microbiology》1993,59(10):3418-3423
Dormant spores of Bacillus subtilis which lack the majority of the alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha- beta- spores) that coat the DNA in wild-type spores are significantly more sensitive to hydrogen peroxide than are wild-type spores. Hydrogen peroxide treatment of alpha- beta- spores causes DNA strand breaks more readily than does comparable treatment of wild-type spores, and alpha- beta- spores, but not wild-type spores, which survive hydrogen peroxide treatment have acquired a significant number of mutations. The hydrogen peroxide resistance of wild-type spores appears to be acquired in at least two incremental steps during sporulation. The first increment is acquired at about the time of alpha/beta-type SASP synthesis, and the second increment is acquired approximately 2 h later, at about the time of dipicolinic acid accumulation. During sporulation of the alpha- beta- strain, only the second increment of hydrogen peroxide resistance is acquired. In contrast, sporulation mutants which accumulate alpha/beta-type SASP but progress no further in sporulation acquire only the first increment of hydrogen peroxide resistance. These findings strongly suggest that binding of alpha/beta-type SASP to DNA provides one increment of spore hydrogen peroxide resistance. Indeed, binding of alpha/beta-type SASP to DNA in vitro provides strong protection against cleavage of DNA by hydrogen peroxide.  相似文献   

10.
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. METHODS AND RESULTS: Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. CONCLUSIONS: Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.  相似文献   

11.
Tailing of survivor curves of clostridial spores heated in edible oils   总被引:2,自引:0,他引:2  
Tailing of survivor curves was observed for Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores heated whilst suspended in edible oils, but not for the same spores suspended in buffer (pH 7.2) or mineral oil or for Bacillus cereus F4165/75 spores suspended in buffer or oils. The tailing cannot be ascribed to a genetic or developmental heterogeneity in the resistance of the spore population or to a heterogeneity of the treatment severity during heating. Heat adaptation due to the release of protective factor(s), to the selection for resistant spores or to the diffusion of oil constituents inside the spore protoplast to protect key molecules from heat denaturation was also ruled out. The tailing can be ascribed to spore clumping during the course of heating or to a heterogeneity in heat resistance of germination system(s) within spores, concurrently with the activation of a dormant germination system. It is probably caused by some oleic acid containing triglycerides.  相似文献   

12.
D L Popham  S Sengupta    P Setlow 《Applied microbiology》1995,61(10):3633-3638
Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha-beta- spores) have the same core water content as do wild-type spores, but alpha-beta- dacB spores had more core water than did dacB spores. The resistance of alpha-beta-, alpha-beta- dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (i) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of alpha/beta-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (ii) suggest that binding of alpha/beta-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (iii) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (iv) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by alpha/beta-type SASP.  相似文献   

13.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

14.
Previous work has shown that spores of wild-type Bacillus subtilis are more resistant to killing by dry and wet heat, low vacuum lyophilization and hydrogen peroxide than are spores lacking the majority of their DNA protective alpha/beta-type small, acid-soluble spore proteins (SASP) (termed alpha(-)beta(-) spores). These four treatments kill alpha(-)beta(-) spores in large part by DNA damage with accompanying mutagenesis, but only dry heat kills wild-type spores by DNA damage and mutagenesis. DNA sequence analysis of nalidixic acid-resistant (nal(r)) mutants generated by these treatments has now shown that the nal(r) mutations are base changes in the gyrA gene that encodes one subunit of DNA gyrase. Analysis of the DNA sequence of the gyrA gene in a large number of nal(r) mutants also indicates that: (1) base changes induced by hydrogen peroxide and wet heat in alpha(-)beta(-) spores are similar to those in spontaneous nal(r) mutants with only a few notable differences; (2) base changes induced by dry heat in wild-type spores and low vacuum lyophilization of alpha(-)beta(-) spores are similar, and include a high level of a tandem base change seen previously only in spores treated with very high vacuum and (3) base changes induced by lyophilization and dry heat are very different from those in spontaneous mutants in wild-type and alpha(-)beta(-) spores, which exhibit only one significant difference. While the initial DNA damage generated in spores by dry heat, lyophilization or high vacuum is almost certainly different than that generated by hydrogen peroxide or wet heat, the precise nature of the DNA damage remains to be determined.  相似文献   

15.
M.Z.H. SABLI, P. SETLOW AND W.M. WAITES. 1996. α/β-Type small acid-soluble proteins (SASP) bind to spore DNA and protect it against ultraviolet light, heat, hydrogen peroxide and freeze drying, making the spores much more resistant than vegetative cells to these agents. Spores of a mutant of Bacillus subtilis lacking the two major α/β-type SASP were almost 30 000-fold less resistant to hypochlorite than were wild-type spores. After treatment with hypochlorite, surviving spores of the mutant, but not those of the wild type, showed higher levels of mutation, suggesting that SASP contribute to hypochlorite resistance by protecting spore DNA.  相似文献   

16.
Ultraviolet (u.v.) laser irradiation has been used to inactivate Bacillus subtilis spores deposited on to planar aluminium- and polyethylene-coated packaging surfaces. Kill kinetics were found to be diphasic, with an initial rapid inactivation phase followed by tailing. Although no definitive evidence was obtained, it is thought that spores located within packaging crevices/pores were primarily responsible for the observed tailing. Surviving spores were also found on the unexposed underside of cards and, to a lesser extent, within clumps. The log count reduction in B. subtilis was dependent on spore loading and total u.v. dose. In comparison, packaging surface composition, fluence (2-18 Jm-2) and frequency (40-150 Hz) had only a negligible effect. By irradiating boards carrying 106 spores, with a dose of 11.5 J cm-2, a log count reduction >5 was obtained. The mode of spore inactivation was primarily through DNA disruption. This was confirmed by the high sensitivity of spores lacking protective, small, acid-soluble proteins, in addition to the high frequency of auxotrophic and asporogenous mutations found amongst survivors.  相似文献   

17.
The effect of hydrogen peroxide on spores of Clostridium bifermentans.   总被引:9,自引:0,他引:9  
The effect of hydrogen peroxide on the germination, colony formation and structure of spores of Clostridium bifermentans was examined. Treatment with 0.35 M-hydrogen peroxide increased the germination rate at 25 degrees C but increasing the temperature or concentration of hydrogen peroxide decreased both the germination rate and colony formation. The presence of Cu2+ increased the lethal effect of hydrogen peroxide on colony formation as much as 3000-fold. Pre-incubation of spores with Cu2+ before treatment with hydrogen peroxide produced a similar increase, but this could be eliminated by washing the spores with dilute spores--apparently from the coat--and treatment with dithiothreitol, which also removes spore-coat protein, increased the lethal effect of hydrogen peroxide 500-fold, suggesting that spore-coat protein has a protective effect against hydrogen peroxide.  相似文献   

18.
AIMS: To compare the relative sensitivity of Bacillus anthracis and spores of other Bacillus spp. deposited on different solid surfaces to inactivation by liquid chemical disinfecting agents. METHODS AND RESULTS: We prepared under similar conditions spores from five different virulent and three attenuated strains of B. anthracis, as well as spores of Bacillus subtilis, Bacillus atrophaeus (previously known as Bacillus globigii), Bacillus cereus, Bacillus thuringiensis and Bacillus megaterium. As spore-surface interactions may bias inactivation experiments, we evaluated the relative binding of different spores to carrier materials. The survival of spores deposited on glass, metallic or polymeric surfaces were quantitatively measured by ASTM standard method E-2414-05 which recovers spores from surfaces by increasing stringency. The number of spores inactivated by each decontaminant was similar and generally within 1 log among the 12 different Bacillus strains tested. This similarity among Bacillus strains and species was observed through a range of sporicidal efficacy on spores deposited on painted metal, polymeric rubber or glass. CONCLUSIONS: The data obtained indicate that the sensitivity of common simulants (B. atrophaeus and B. subtilis), as well as spores of B. cereus, B. thuringiensis, and B. megaterium, to inactivation by products that contain either: peroxide, chlorine or oxidants is similar to that shown by spores from all eight B. anthracis strains studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The comparative results of the present study suggest that decontamination and sterilization data obtained with simulants can be safely extrapolated to virulent spores of B. anthracis. Thus, valid conclusions on sporicidal efficacy could be drawn from safer and less costly experiments employing non-pathogenic spore simulants.  相似文献   

19.
AIMS: To determine the effect of sporulation temperature on Bacillus subtilis spore resistance and spore composition. METHODS AND RESULTS: Bacillus subtilis spores prepared at temperatures from 22 to 48 degrees C had identical amounts of dipicolinic acid and small, acid-soluble proteins but the core water content was lower in spores prepared at higher temperatures. As expected from this latter finding, spores prepared at higher temperatures were more resistant to wet heat than were spores prepared at lower temperatures. Spores prepared at higher temperatures were also more resistant to hydrogen peroxide, Betadine, formaldehyde, glutaraldehyde and a superoxidized water, Sterilox. However, spores prepared at high and low temperatures exhibited nearly identical resistance to u.v. radiation and dry heat. The cortex peptidoglycan in spores prepared at different temperatures showed very little difference in structure with only a small, albeit significant, increase in the percentage of muramic acid with a crosslink in spores prepared at higher temperatures. In contrast, there were readily detectable differences in the levels of coat proteins in spores prepared at different temperatures and the levels of at least one coat protein, CotA, fell significantly as the sporulation temperature increased. However, this latter change was not due to a reduction in cotA gene expression at higher temperatures. CONCLUSIONS: The temperature of sporulation affects a number of spore properties, including resistance to many different stress factors, and also results in significant alterations in the spore coat and cortex composition. SIGNIFICANCE AND IMPACT OF THE STUDY: The precise conditions for the formation of B. subtilis spores have a large effect on many spore properties.  相似文献   

20.
Aims: To evaluate a sodium hypochlorite and hydrogen peroxide solution (Ox‐B7) as a potential decontaminant of Bacillus subtilis spore‐contaminated surface materials (porous and nonporous). Methods and Results: Test materials were contaminated with B. subtilis spores to a final concentration in the range of 5·7–6·6 log CFU cm?2. Ox‐B7 reduced spore counts by 99·999% (5 log) for both porous and nonporous surfaces within a 5‐min contact. Treatment with equivalent concentrations of only sodium hypochlorite reduced spore counts by 99% (2 log) on porous materials and by 99·99% (4 log) on nonporous materials. Hydrogen peroxide treatments reduced spores by less than 90% (<1 log) on both porous and nonporous materials when compared with untreated samples. Conclusions: A combination of sodium hypochlorite and hydrogen peroxide (Ox‐B7) effectively killed B. subtilis spores on both porous and nonporous surface materials. Significance and Impact of the Study: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant of spore‐contaminated surface materials, as it is more effective than when hydrogen peroxide or sodium hypochlorite are used separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号