首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Copines are calcium-dependent phospholipid-binding proteins found in many eukaryotic organisms and are thought to be involved in signaling pathways that regulate a wide variety of cellular processes. Copines are characterized by having two C2 domains at the N-terminus accompanied by an A domain at the C-terminus. Six copine genes have been identified in the Dictyostelium genome, cpnA – cpnF.

Results

Independent cell lines expressing CpnA, CpnB, CpnC, CpnE, or CpnF tagged with green fluorescent protein (GFP) were created as tools to study copine protein membrane-binding and localization. In general, the GFP-tagged copine proteins appeared to localize to the cytoplasm in live cells. GFP-tagged CpnB, CpnC, and CpnF were also found in the nucleus. When cells were fixed or when live cells were treated with calcium ionophore, the GFP-tagged copine proteins were found associated with the plasma membrane and vesicular organelles. When starved Dictyostelium cells were stimulated with cAMP, which causes a transitory increase in calcium concentration, all of the copines translocated to the plasma membrane, but with varying magnitudes and on and off times, suggesting each of the copines has distinct calcium-sensitivities and/or membrane-binding properties. In vitro membrane binding assays showed that all of the GFP-tagged copines pelleted with cellular membranes in the presence of calcium; yet, each copine displayed distinct calcium-independent membrane-binding in the absence of calcium. A lipid overlay assay with purified GFP-tagged copine proteins was used to screen for specific phospholipid-binding targets. Similar to other proteins that contain C2 domains, GFP-tagged copines bound to a variety of acidic phospholipids. CpnA, CpnB, and CpnE bound strongly to PS, PI(4)P, and PI(4,5)P2, while CpnC and CpnF bound strongly to PI(4)P.

Conclusions

Our studies show that the Dictyostelium copines are soluble cytoplasmic and nuclear proteins that have the ability to bind intracellular membranes. Moreover, copines display different membrane-binding properties suggesting they play distinct roles in the cell. The transient translocation of copines to the plasma membrane in response to cAMP suggests copines may play a specific role in chemotaxis signaling.
  相似文献   

2.
Copines are highly conserved proteins with lipid-binding activities found in animals, plants, and protists. They contain two calcium-dependent phospholipid binding C2 domains at the amino terminus and a VWA domain at the carboxyl terminus. The biological roles of most copines are not understood and the biochemical properties required for their functions are largely unknown. The Arabidopsis copine gene BON1/CPN1 is a negative regulator of cell death and defense responses. Here we probed the potential biochemical activities of BON1 through mutagenic studies. We found that mutations of aspartates in the C2 domains did not alter plasma membrane localization but compromised BON1 activity. Mutation at putative myristoylation residue glycine 2 altered plasma membrane localization of BON1 and rendered BON1 inactive. Mass spectrometry analysis of BON1 further suggests that the N-peptide of BON1 is modified. Furthermore, mutations that affect the interaction between BON1 and its functional partner BAP1 abolished BON1 function. This analysis reveals an unanticipated regulation of copine protein localization and function by calcium and lipid modification and suggests an important role in protein-protein interaction for the VWA domain of copines.  相似文献   

3.

Background

The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In addition, functional predictions are made.

Results

Our results show that BB0173, in contrast to BB0172, is an inner membrane protein, in which the VWFA domain is exposed to the periplasmic space. Further, BB0173 was predicted to have an aerotolerance regulator domain, and expression of BB0173 and the surrounding genes was evaluated under aerobic and microaerophilic conditions, revealing that these genes are downregulated under aerobic conditions. Since the VWFA domain containing proteins of B. burgdorferi are highly conserved, they are likely required for survival of the pathogen through sensing diverse environmental oxygen conditions.

Conclusions

Presently, the complex mechanisms that B. burgdorferi uses to detect and respond to environmental changes are not completely understood. However, studying the mechanisms that allow B. burgdorferi to survive in the highly disparate environments of the tick vector and mammalian host could allow for the development of novel methods of preventing acquisition, survival, or transmission of the spirochete. In this regard, a putative membrane protein, BB0173, was characterized. BB0173 was found to be highly conserved across pathogenic Borrelia, and additionally contains several truly transmembrane domains, and a Bacteroides aerotolerance-like domain. The presence of these functional domains and the highly conserved nature of this protein, strongly suggests a required function of BB0173 in the survival of B. burgdorferi.
  相似文献   

4.

Background  

Copines are calcium-dependent phospholipid-binding proteins found in diverse eukaryotic organisms. We are studying the function of copines in Dictyostelium discoideum, a single-celled amoeba that undergoes cell differentiation and morphogenesis to form multicellular fruiting bodies when placed in starvation conditions. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to complete the developmental cycle, arresting at the slug stage. The aim of this study is to further characterize the developmental defect of the cpnA- cells.  相似文献   

5.

Background

N-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown. The C-terminal half of BVU_4064 is assigned to protein family PF12986 (DUF3870); the equivalent part of BF1687 was unclassified.

Results

Crystal structures of both BVU_4064 and BF1687 proteins, solved at the JCSG center, show strikingly similar three-dimensional structures. The main difference between the two is that the two domains in the BVU_4064 protein are connected by a short linker, as opposed to a longer insertion made of 4 helices placed linearly along with a strand that is added to the C-terminal domain in the BF1687 protein. The N-terminal domain in both proteins, corresponding to the PF12985 (DUF3869) domain is a β–sandwich with pre-albumin-like fold, found in many proteins belonging to the Transthyretin clan of Pfam. The structures of C-terminal domains of both proteins, corresponding to the PF12986 (DUF3870) domain in BVU_4064 protein and an unclassified domain in the BF1687 protein, show significant structural similarity to bacterial pore-forming toxins. A helix in this domain is in an analogous position to a loop connecting the second and third strands in the toxin structures, where this loop is implicated to play a role in the toxin insertion into the host cell membrane. The same helix also points to the groove between the N- and C-terminal domains that are loosely held together by hydrophobic and hydrogen bond interactions. The presence of several conserved residues in this region together with these structural determinants could make it a functionally important region in these proteins.

Conclusions

Structural analysis of BVU_4064 and BF1687 points to possible roles in mediating multiple interactions on the cell-surface/extracellular matrix. In particular the N-terminal domain could be involved in adhesive interactions, the C-terminal domain and the inter-domain groove in lipid or carbohydrate interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0434-7) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin.

Results

We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca2+-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain.

Conclusion

The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca2+- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.  相似文献   

7.

Background

Intracellular membrane fusion processes are mediated by the spatial and temporal control of SNARE complex assembly that results in the formation of a four-helical bundle, composed of one vesicle SNARE and three target membrane SNARE polypeptide chains. Syntaxins are essential t-SNAREs and are characterized by an N-terminal Habc domain, a flexible linker region, a coiled-coil or SNARE motif and a membrane anchor. The N-terminal Habc domain fulfills important regulatory functions while the coiled-coil motif, present in all SNAREs, is sufficient for SNARE complex formation, which is thought to drive membrane fusion.

Results

Here we report the crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei, s-syntaxin. Squid Habc crystallizes as a dimer and the monomer structure consists of a three-helical bundle. One molecule is strikingly similar to mammalian syntaxin 1A while the second one shows a structural deviation from the common fold in that the C-terminal part of helix C unwinds and adopts an extended conformation.

Conclusion

Conservation of surface residues indicates that the cytosolic part of s-syntaxin can adopt an auto-inhibitory closed conformation that may bind squid neuronal Sec1, s-Sec1, in the same manner as observed in structure of the rat nSec1/syntaxin 1A complex. Furthermore, despite the overall structural similarity, the observed changes at the C-terminus of one molecule indicate structural plasticity in neuronal syntaxin. Implications of the structural conservation and the changes are discussed with respect to potential Habc domain binding partners such as Munc13, which facilitates the transition from the closed to the open conformation.
  相似文献   

8.

Background

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca2 +-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores.

Methods

Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined.

Results

K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane.

Conclusions

Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III.

General significance

The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.  相似文献   

9.
10.

Background  

Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa.  相似文献   

11.
The synaptic vesicle protein synaptotagmin 1 is thought to convey the calcium signal onto the core secretory machinery. Its cytosolic portion mainly consists of two C2 domains, which upon calcium binding are enabled to bind to acidic lipid bilayers. Despite major advances in recent years, it is still debated how synaptotagmin controls the process of neurotransmitter release. In particular, there is disagreement with respect to its calcium binding properties and lipid preferences. To investigate how the presence of membranes influences the calcium affinity of synaptotagmin, we have now measured these properties under equilibrium conditions using isothermal titration calorimetry and fluorescence resonance energy transfer. Our data demonstrate that the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not phosphatidylserine, markedly increases the calcium sensitivity of synaptotagmin. PI(4,5)P2 binding is confined to the C2B domain but is not affected significantly by mutations of a lysine-rich patch. Together, our findings lend support to the view that synaptotagmin functions by binding in a trans configuration whereby the C2A domain binds to the synaptic vesicle and the C2B binds to the PI(4,5)P2-enriched plasma membrane.Calcium-dependent secretion of neurotransmitter-loaded synaptic vesicles is at the heart of synaptic transmission. The underlying membrane fusion reaction between vesicle and plasma membrane has been intensively studied and found to be promoted by both protein-protein as well as protein-lipid interactions. From the multitude of proteins involved in this membrane fusion event, the Ca2+-binding protein synaptotagmin 1 is one of its central regulating factors (for review, see Refs. 16). Synaptotagmin 1 is anchored in the membrane of synaptic vesicles via a single transmembrane region. Its N-terminal region comprises a short luminal domain, whereas the larger cytoplasmic C-terminal region consists of tandem C2 domains, termed C2A and C2B, tethered to each other via a short linker (7) (a schematic outline of the structural features of synaptotagmin 1 is given in Fig. 1A). Several isoforms with similar domain structure have been identified (8).Open in a separate windowFIGURE 1.Structure of synaptotagmin 1. Synaptotagmin 1 protein consists of two C2 domains, C2A and C2B, that coordinate three and two calcium ions, respectively (16). The acidic residues that coordinate calcium binding is shown schematically, with the residues mutated in the calcium binding mutants (i.e. C2Ab*, C2a*B, and C2a*b*) shown in red. The Lys-rich patch is represented as a ball-and-stick model colored blue with the single cysteine site for the FRET assay (S342C) colored in green (A). The different mutants and constructs used in the study are schematically depicted (B).C2 domains are Ca2+ binding modules of ∼130 amino acids, first described as the second conserved region of protein kinase C (PKC)2 (9). The C2A domain of synaptotagmin 1 was the first C2 domain structure to be determined (10). In subsequent studies other C2 domains, including the C2B domain of synaptotagmin, were shown to exhibit very similar three-dimensional structures. They have a conserved eight-stranded anti-parallel β-sandwich connected by surface loops. C2 modules are most commonly found in enzymes involved in lipid modifications and signal transduction (PKC, phospholipases, phosphatidylinositol 3-kinases, etc.) and proteins involved in membrane trafficking (synaptotagmins, rabphilin, DOC2, etc.) (11).Calcium ions bind in a cup-shaped depression formed by the N- and C-terminal loops of the C2 key motifs of C2 domains. Notably, the coordination spheres for the Ca2+ ions are incomplete (12, 13). In canonical C2 domains, this incomplete coordination sphere can be occupied by anionic and neutral (14, 15) phospholipids, enabling the C2 domain to be attached to the membrane. Hence, it is thought that the general function of C2 domains is to mediate Ca2+-triggered binding of the protein to a membrane. In fact, upon rise of the intracellular calcium level, C2 domain-containing enzymes are translocated to the membrane so that the catalytic domains can interact with lipids or membrane-anchored protein substrates (11). Yet synaptotagmin 1 does not contain such a catalytic domain, suggesting that the properties of its tandem C2 domains are the sole key to understanding its molecular function. In neurotransmission, synaptotagmin is thought to transmit the Ca2+ signal onto the core membrane fusion machinery, composed of the three SNARE (soluble N-ethylmaleimide sensitive factor attachment receptor) proteins syntaxin 1, SNAP-25 (Q-SNAREs, residing on the plasma membrane), and synaptobrevin 2 (also referred to as VAMP2 (vesicle-associated membrane protein) (R-SNARE, residing on the synaptic vesicle)). So far the multifarious interplay between the SNARE machinery, the two fusing membranes, and synaptotagmin 1 is not well understood. The crystal structure of the entire cytosolic domain of synaptotagmin in the absence of Ca2+ has revealed an interesting domain arrangement with the two C2 domains facing in opposite directions (16), hinting at the possibility that the molecule might interact with two opposing membranes upon rise of intracellular Ca2+.Although the underlying processes of Ca2+ binding and Ca2+-dependent membrane binding of synaptotagmin 1 have been studied by a multitude of structural and biochemical investigations, they have not revealed features of synaptotagmin C2 domains that are different from those of other C2 domain-containing proteins. Calcium binding to synaptotagmin in the absence of membranes has been studied by NMR. These studies showed that the isolated C2A domain of synaptotagmin 1 binds three calcium ions with an apparent affinity of ∼60–75 μm, ∼400–500 μm, and more than 1 mm (17). The isolated C2B domain binds two calcium ions with similar calcium affinities in the range of ∼300–600 μm (18). The relatively low intrinsic Ca2+ affinities of both C2 domains are difficult to reconcile with the role of synaptotagmin 1 as the Ca2+ sensor for fast and synchronous neurotransmitter release, suggesting that interaction with phospholipids contributes to its Ca2+ sensitivity. Indeed, Ca2+-triggered binding of isolated C2 domains to lipid membranes was first shown in an in vitro study of synaptotagmin 1 using a fluorescence-based approach (19). Subsequent equilibrium fluorescence studies have shed more light on the molecular process underlying membrane binding of synaptotagmin 1, for example by demonstrating that the isolated C2A domain dips into the membrane bilayer upon Ca2+ binding (20). This penetration was corroborated by electro-paramagnetic resonance (EPR) spectroscopy studies, which also showed that the penetration depth increased when both C2 domains of synaptotagmin 1 were attached to each other (21) as compared with the single domains (22, 23). However, a variety of different Ca2+ and lipid preferences for the individual C2 domains of synaptotagmin has been reported (3, 5, 6).To resolve these discrepancies and to shed more light on the molecular interactions of synaptotagmin 1, we have now used quantitative approaches to study the Ca2+ concentration and the lipid composition needed for synaptotagmin to bind to membranes. We employed isothermal titration calorimetry (ITC) to measure the intrinsic calcium binding affinities of synaptotagmin 1 C2 domains both as isolated domains as well as in the context of the tandem C2AB protein. Then, we investigated whether the intrinsic calcium affinity is modulated in the presence of lipids using a newly developed fluorescence resonance energy transfer (FRET) approach. In addition, we investigated how Ca2+ and phospholipid binding of synaptotagmin is affected when the Ca2+ binding sites in both C2 domains and the putative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-interacting site in the C2 domain are inactivated. We found that the two C2 domains bind calcium largely independently but cooperate in membrane binding. Furthermore, we confirmed that the C2B domain interacts specifically with PI(4,5)P2. Remarkably, in the presence of PI(4,5)P2, drastically lower amounts of calcium were needed for membrane binding.  相似文献   

12.

Background

Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region.

Methodology/Principal Findings

Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs.

Conclusions/Significance

The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics.  相似文献   

13.

Background  

Pleckstrin homology (PH) domains are one of the most prevalent domains in the human proteome and represent the major phosphoinositide-binding module. These domains are often found in signaling proteins and function predominately by targeting their host proteins to the cell membrane. Inositol phosphates, which are structurally similar to phosphoinositides, are not only known to play a role as signaling molecules but are also capable of being bound by PH domains.  相似文献   

14.

Background

HIV-1 formation is driven by the viral structural polyprotein Gag, which assembles at the plasma membrane into a hexagonal lattice. The C-terminal p6Gag domain harbors short peptide motifs, called late domains, which recruit the cellular endosomal sorting complex required for transport and promote HIV-1 abscission from the plasma membrane. Similar to late domain containing proteins of other viruses, HIV-1 p6 is phosphorylated at multiple residues, including a highly conserved serine at position 40. Previously published studies showed that an S40F exchange in p6Gag severely affected virus infectivity, while we had reported that mutation of all phosphorylatable residues in p6Gag had only minor effects.

Findings

We introduced mutations into p6Gag without affecting the overlapping pol reading frame by using an HIV-1 derivative where gag and pol are genetically uncoupled. HIV-1 derivatives with a conservative S40N or a non-conservative S40F exchange were produced. The S40F substitution severely affected virus maturation and infectivity as reported before, while the S40N exchange caused no functional defects and the variant was fully infectious in T-cell lines and primary T-cells.

Conclusions

An HIV-1 variant carrying a conservative S40N exchange in p6Gag is fully functional in tissue culture demonstrating that neither S40 nor its phosphorylation are required for HIV-1 release and maturation. The phenotype of the S40F mutation appears to be caused by the bulky hydrophobic residue introduced into a flexible region.
  相似文献   

15.

Background

In computational analysis, the RING-finger domain is one of the most frequently detected domains in the Arabidopsis proteome. In fact, it is more abundant in Arabidopsis than in other eukaryotic genomes. However, computational analysis might classify ambiguous domains of the closely related PHD and LIM motifs as RING domains by mistake. Thus, we set out to define an ordered set of Arabidopsis RING domains by evaluating predicted domains on the basis of recent structural data.

Results

Inspection of the proteome with a current InterPro release predicts 446 RING domains. We evaluated each detected domain and as a result eliminated 59 false positives. The remaining 387 domains were grouped by cluster analysis and according to their metal-ligand arrangement. We further defined novel patterns for additional computational analyses of the proteome. They were based on recent structural data that enable discrimination between the related RING, PHD and LIM domains. These patterns allow us to predict with different degrees of certainty whether a particular domain is indeed likely to form a RING finger.

Conclusions

In summary, 387 domains have a significant potential to form a RING-type cross-brace structure. Many of these RING domains overlap with predicted PHD domains; however, the RING domain signature mostly prevails. Thus, the abundance of PHD domains in Arabidopsis has been significantly overestimated. Cluster analysis of the RING domains defines groups of proteins, which frequently show significant similarity outside the RING domain. These groups document a common evolutionary origin of their members and potentially represent genes of overlapping functionality.
  相似文献   

16.

Background

Human Prostate Secretory Protein of 94 amino acids (PSP94) has been shown to bind human CRISP-3 (cysteine-rich secretory protein 3) with very high affinity. CRISP-3 belongs to the CRISP family of proteins having a PR-1 (pathogenesis related protein 1) domain at its N-terminal and ion channel regulatory (ICR) domain at its C-terminal connected by a hinge region. Functional significance of this complex is not yet known.

Methods

In order to identify the residues and/or regions involved in PSP94–CRISP-3 interaction, site-directed mutagenesis was employed. Effect of the mutations on the interaction was studied by co-immunoprecipitation (Co-IP).

Results

For PSP94, amino acids Y3, F4, P56 and the C-terminal β-strand were found to be crucial for interacting with CRISP-3. A disulfide bond between the two domains of PSP94 (C37A–C73A) was also important for this interaction. In case of CRISP-3, the N-terminal domain alone could not maintain a strong interaction with PSP94 but it required presence of the hinge region and not the C-terminal domain. Apart from CRISP-3, CRISP-2 was also found to interact with human PSP94. Based on our findings the most likely model of PSP94–CRISP-3 complex has been proposed.

Conclusion

The terminal β-strands of PSP94 contact the first α-helix and the hinge region of CRISP-3.

General significance

Involvement of the hinge region of CRISPs in interaction with PSP94 may affect the domain movement of CRISPs essential for the ion-channel regulatory activity resulting in inhibition of this activity.  相似文献   

17.

Background

Proteins are composed of domains, protein segments that fold independently from the rest of the protein and have a specific function. During evolution the arrangement of domains can change: domains are gained, lost or their order is rearranged. To facilitate the analysis of these changes we propose the use of multiple domain alignments.

Results

We developed an alignment program, called MDAT, which aligns multiple domain arrangements. MDAT extends earlier programs which perform pairwise alignments of domain arrangements. MDAT uses a domain similarity matrix to score domain pairs and aligns the domain arrangements using a consistency supported progressive alignment method.

Conclusion

MDAT will be useful for analysing changes in domain arrangements within and between protein families and will thus provide valuable insights into the evolution of proteins and their domains. MDAT is coded in C++, and the source code is freely available for download at http://www.bornberglab.org/pages/mdat.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0442-7) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.

Results

This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. The repeat domains of EccB1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD1has a ubiquitin-like fold and forms a dimer with a negatively charged groove.

Conclusions

These structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.
  相似文献   

19.

Background

Plasmodium falciparum erythrocyte membrane protein-1, a variant antigen of the malaria parasite, is potentially a target for the immune response. It would be important to determine whether there are CD4 T cells that recognise conserved regions. However, within the relatively conserved region, there is variation. It is not possible to test T cell responses from small field samples with all possible peptides.

Methods

We have aligned sequences that are relatively conserved between several PfEMP1 molecules, and chosen a representative sequence similar to most of the PfEMP1 variants. Using these peptides as pools representing CIDRα, CIDRβ and DBLβ-δ domains, DBLα domain, and EXON 2 domain of PfEMP1, we measured the CD4 T cell responses of malaria-exposed donors from Benin, West Africa by a FACS based assay.

Results

All the three peptide pools elicited a CD4 T cell response in a proportion of malaria-exposed and non-exposed donors. CD4 T cell proliferation occurs at a relatively higher magnitude to peptide pools from the DBLα and EXON 2 in the malaria-exposed donors living in Benin than in the UK malaria-unexposed donors.

Conclusions

These findings suggest that an immunological recall response to conserved peptides of a variant antigen can be measured. Further testing of individual peptides in a positive pool will allow us to determine those conserved sequences recognised by many individuals. These types of assays may provide information on conserved peptides of PfEMP1 which could be useful for stimulating T cells to provide help to P. falciparum specific B cells.
  相似文献   

20.
Signal-regulatory protein α (SIRPα) is a myeloid membrane receptor that interacts with the membrane protein CD47, a marker of self. We have solved the structure of the complete extracellular portion of SIRPα, comprising three immunoglobulin superfamily domains, by x-ray crystallography to 2.5 Å resolution. These data, together with previous data on the N-terminal domain and its ligand CD47 (possessing a single immunoglobulin superfamily domain), show that the CD47-SIRPα interaction will span a distance of around 14 nm between interacting cells, comparable with that of an immunological synapse. The N-terminal (V-set) domain mediates binding to CD47, and the two others are found to be constant (C1-set) domains. C1-set domains are restricted to proteins involved in vertebrate antigen recognition: T cell antigen receptors, immunoglobulins, major histocompatibility complex antigens, tapasin, and β2-microglobulin. The domains of SIRPα (domains 2 and 3) are structurally more similar to C1-set domains than any cell surface protein not involved in antigen recognition. This strengthens the suggestion from sequence analysis that SIRP is evolutionarily closely related to antigen recognition proteins.Signal-regulatory protein α (SIRPα)4 is a membrane receptor present on myeloid cells and neurons that interacts with the widely distributed cell surface protein CD47 (reviewed in Refs. 1 and 2). Absence of CD47 leads to uptake of cells via macrophages, indicating that CD47 acts as a marker of self (3). SIRPα gives inhibitory signals through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2 (4). Binding of the N-terminal immunoglobulin superfamily (IgSF) V-set domain of SIRPα (SIRPα d1) to the single IgSF domain of CD47 is mediated by the loops of the SIRPα IgSF domain, analogous to the interactions mediated by antigen receptors, albeit involving only a single domain (5, 6). This type of binding distinguishes the CD47-SIRPα interaction from that of many interactions at the cell surface involving IgSF domains such as CD2-CD58, where the face of the IgSF domain is involved (7). SIRPα domains 2 and 3 (d2 and d3) show amino acid sequence similarity to IgSF C1-set domains (8). Since IgSF C1-set domains have only been confirmed in vertebrate antigen receptors and associated proteins (Ig light and heavy chains, T cell receptor chains, MHC class I and II and related proteins, β2-microglobulin, and very recently tapasin (9)) of the vertebrate adaptive immune system, it was suggested that SIRPα might have evolved from a precursor of the antigen receptors (8).We describe here the crystal structure of the full three-domain extracellular region of SIRPα, revealing that the topology of the CD47-SIRPα interaction is compatible with productive engagement occurring when cells come together in synapse-like contacts. We show that the two membrane-proximal IgSF domains are particularly close in structure to C1-set IgSF domains. This, together with the presence of an IgSF V-set domain mediating ligand recognition, suggests that SIRPα is related to a key precursor in the evolution of vertebrate antigen receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号