首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Summary In Mexico there are different alcoholic beverages produced from agave juices from different agave plants, which are cooked, fermented and distilled. For tequila production only Agave tequilana is allowed. In this study we compared yeast strains of different species from different origin (agave and grape juice) for parameters of technological interest, such as SO2 and copper resistance, ethanol tolerance and enzymatic activities. All agave strains were found to be more resistant to SO2 and agave non-Saccharomyces yeasts were more tolerant to ethanol, whereas grape strains exhibited positive results for β-glucosidase and β-xylosidase activities. As regards fermentations of Agave tequilana juice with ethanol added at different concentrations, only agave Saccharomyces strains were more tolerant to ethanol than grape strains.  相似文献   

2.
Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.  相似文献   

3.
In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the β(1,3)-glucanase lytic activity and the β-glucan/mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l−1 sugar concentration of A. tequilana juice and with the control YPD using 30 g l−1 of glucose. The three yeasts strains showed different levels of β-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.  相似文献   

4.
Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l−1) and low (30 g l−1) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l−1 of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.  相似文献   

5.
The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.  相似文献   

6.
During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.  相似文献   

7.
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme® (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.  相似文献   

8.
During tequila production, up to 75 % w/w of the Agave plant is discarded when leaves are removed from the stem. The discarded leaves represent an extensive amount of unexploited biomass that was used here for bioethanol production in no-input fermentations, where no acid or enzymatic hydrolysis, supplementation of nutrients or standardization of carbohydrate content occur. Ethanol yield from Agave leaf juice is unaffected by sterilization but reduced if fermentation is reliant solely on endogenous microorganisms. Non-Saccharomyces yeasts, including Kluyveromyces marxianus and Candida akabanensis, proved to be more robust than standard Saccharomyces spp. and yielded up to 88 % of the theoretical maximum ethanol from leaf juice. Combining leaf and stem juice, as from a whole plant, was predicted to maximize yield at up to 19,439 L/ha of ethanol from mature plants.  相似文献   

9.
The kinetics and metabolic behavior of Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2 in composite culture was investigated. K. apiculata showed a higher viability through the fermentation; however the maximum cell density of both yeasts decreased. This behavior was not due to ethanol concentration, killer toxins production or competition for assimilable nitrogenous compounds between both yeasts. Despite the consistent production of secondary products by single culture of K. apiculata, an increase of these compounds was not observed in mixed culture. These results contribute to a better understanding of the behavior of non-Saccharomyces yeasts and their potential application in the wine industry.  相似文献   

10.
A fermentation system was continuously fed with sugar-cane syrup and operated with recycling of Saccharomyces cerevisiae cells at temperatures varying from 30 to 47°C. The aim of the present work was to obtain and study the colonies of isolates showing elongated cells of yeasts which were sporadically observed at the end of this continuous process. Based on a sequence of assays involving methods of classical taxonomy and RAPD-PCR, two groups of isolates showing characteristics of non-Saccharomyces yeasts were identified in the yeast population where S. cerevisiae was the dominant yeast. The largest group of non-Saccharomyces yeasts, resulting from a slow proliferation over the 2 months, reached a final level of 29.6% at the end of the process. RAPD-PCR profiles obtained for the isolates of this dominant non-Saccharomyces yeast indicated that they were isolates of Issatchenkia orientalis. Pichia membranifaciens was the only species of non-Saccharomyces yeast detected together with I. orientalis but at a very low frequency. The optimum temperature for ethanol formation shown by the isolate 195B of I. orientalis was 42°C. This strain also showed a faster ethanol formation and biomass accumulation than the thermotolerant strain of S. cerevisiae used as the starter of this fermentation process. Some isolates of I. orientalis were also able to grow better at 40°C than at 30°C on plates containing glycerol as carbon source. Yeasts able to grow and produce ethanol at high temperatures can extend the fermentation process beyond the temperature limits tolerated by S. cerevisiae.  相似文献   

11.
Five yeast strains isolated from agave juice were studied for their fermentative and aromatic capacity. The experiments were performed using agave juice supplemented with ammonium sulphate, as is commonly done in tequila distilleries. Three strains classified as Saccharomyces cerevisiae showed high biomass and ethanol production, as well as higher ethanol tolerance than those classified as Kloeckera africana and Kloeckera apiculata, which showed scarce growth. The results suggest that Kloeckera strains were affected by nutritional limitation and/or toxic compounds present in agave juice. Agave juice analyses showed a lower amino acid content than those reported in grape juice. S. cerevisiae strains produced predominantly amyl and isoamyl alcohols, n-propanol, 2-phenyl ethanol, succinic acid, glycerol, methanol, isoamyl acetate, ethyl hexanoate, acetaldehyde and isobutanol, whereas Kloeckera strains showed a high production of acetic acid, 2-phenyl ethyl acetate and ethyl acetate. The methanol concentration was significantly different among the yeasts studied. The diversity between three S. cerevisiae strains were higher for the aromatic profile than for genetic level and kinetic parameter. On the other hand, the diversity of Kloeckera yeasts were lower than Saccharomyces yeasts even when belonging to two different species.  相似文献   

12.
Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of ≥20 ml air l−1 mash min−1 showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.  相似文献   

13.
Analysis of yeasts derived from natural fermentation in a Tokaj winery   总被引:7,自引:0,他引:7  
The diversity of yeast flora was investigated in a spontaneously fermenting sweet white wine in a Tokaj winery. The non-Saccharomyces yeasts dominating the first phase of fermentation were soon replaced by a heterogeneous Saccharomycespopulation, which then became dominated by Saccharomyces bayanus. Three Saccharomyces sensu stricto strains isolated from various phases of fermentation were tested for genetic stability, optimum growth temperature, tolerance to sulphur dioxide, copper and ethanol as well as for the ability to produce hydrogen sulphide and various secondary metabolites known to affect the organoleptic properties of wines. The analysis of the single-spore cultures derived from spores of dissected asci revealed high stability of electrophoretic karyotypes and various degrees of heterozygosity for mating-types, the fermentation of galactose and the production of metabolic by-products. The production levels of the by-products did not segregate in a 2:2 fashion, suggesting that the synthesis of these compounds is under polygenic control.  相似文献   

14.
Traditional tequila fermentation is a complex microbial process performed by different indigenous yeast species. Usually, they are classified in two families: Saccharomyces and Non-Saccharomyces species. Using mixed starter cultures of several yeasts genera and species is nowadays considered to be beneficial to enhance the sensorial characteristics of the final products (taste, odor). However, microbial interactions occurring in such fermentations need to be better understood to improve the process. In this work, we focussed on a Saccharomyces cerevisiae/Kluyveromyces marxianus yeast couple. Indirect interactions due to excreted metabolites, thanks to the use of a specific membrane bioreactor, and direct interaction due to cell-to-cell contact have been explored. Comparison of pure and mixed cultures was done in each case. Mixed cultures in direct contact showed that both yeast were affected but Saccharomyces rapidly dominated the cultures whereas Kluyveromyces almost disappeared. In mixed cultures with indirect contact the growth of Kluyveromyces was decreased compared to its pure culture but its concentration could be maintained whereas the growth of Saccharomyces was enhanced. The loss of viability of Kluyveromyces could not be attributed only to ethanol. The sugar consumption and ethanol production in both cases were similar. Thus the interaction phenomena between the two yeasts are different in direct and indirect contact, Kluyveromyces being always much more affected than Saccharomyces.  相似文献   

15.
The apiculate yeasts are the species predominating the first stage of grape must alcoholic fermentation and are important for the production of desired volatile compounds. The aim of the present investigation was to establish a protocol for the enological selection of non-Saccharomyces strains directly isolated from a natural must fermentation during the tumultuous phase. At this scope, fifty Hanseniaspora uvarum isolates were characterized at strain level by employing a new combined PCR-based approach. One isolate representative of each identified strain was used in fermentation assays to assess strain-specific enological properties. The chemical analysis indicated that all the analyzed strains were low producers of acetic acid and hydrogen sulphide, whereas they showed fructophilic character and high glycerol production. Analysis of volatile compounds indicated that one strain could positively affect, during the alcoholic fermentation process, the taste and flavour of alcoholic beverages. The statistical evaluation of obtained results indicated that the selected autochthonous H. uvarum strain possessed physiological and technological properties which satisfy the criteria indicated for non-Saccharomyces wine yeasts selection. Our data suggest that the described protocol could be advantageously applied for the selection of non-Saccharomyces strains suitable for the formulation of mixed or sequential starters together with Saccharomyces cerevisiae.  相似文献   

16.
Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species–species interactions between D. bruxellensis and S. cerevisiae are still poorly understood.  相似文献   

17.
Abstract

Ethanol-Producing Microrganisms

A wide variety of microbial species are known to produce ethanol as a product of carbohydrate fermentation.1 Organisms which have received attention in recent studies include a wide range of yeasts, some molds, and a number of specialized bacteria (Table 1). Traditionally, yeasts, particularly Saccharomyces cerevisiae, have been used for producing fermentation ethanol or alcoholic beverages in large-scale processes. In Table 1, Zymomonas mobilis, the predominant organism in fermentations producing Mexican “pulque” or palm wine,34-46 is the only bacterium of current economic significance. However, the development of interest in other species with the ability, for example, to convert xylose to ethanol or to ferment at high temperatures indicates that no existing strain of Saccharomyces or Zymomonas meets the specifications for all current and future uses. Certainly the use of alternative organisms, or even mixed cultures,4245 warrants investigation. However, this review will concentrate on proven ethanol producers (i.e., yeasts, particularly Saccharomyces spp., and Z. mobilis) and how these might be improved in a systematic way for ethanol production, using the wide range of genetic techniques which is now available.  相似文献   

18.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

19.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

20.
刺梨自然发酵过程中非酿酒酵母多样性分析   总被引:2,自引:0,他引:2  
【目的】分析刺梨果实自然发酵过程中非酿酒酵母菌群特征,为筛选优质刺梨非酿酒酵母提供参考。【方法】基于Illumina MiSeq高通量测序技术和WL营养琼脂鉴定培养基纯种分离技术,分析刺梨果实自然发酵1 d (F1)、3 d (F3)、5 d (F5)和15 d (F15) 4个阶段及YPD培养基富集培养样本中非酿酒酵母种群组成和多样性。【结果】高通量测序分析结果共获得182个OTUs (operational taxonomic units,OTUs),归属于81个属107个种;物种多样性分析结果表明,刺梨果实自然发酵前期,优势非酿酒酵母为汉逊酵母(Hanseniasporasp.)和伯顿丝孢毕赤酵母(Hyphopichiaburtonii),二者在样本F1中分别占42.59%和26.85%;随着自然发酵的不断进行,二者的比例逐渐降低,在第15天(F15),Hanseniaspora sp.和H. burtonii比例降低至7.73%和0.52%。相反,Pichia sporocuriosa和未培养的酵母,随着自然发酵不断进行所占比例逐渐增大,分别由F1中的0.23%和0.33%增至F15中的37.26%和32.62%。此外,采用WL营养琼脂鉴定培养基纯种分离和鉴定技术,从刺梨上分离到Hanseniasporasp.、H.burtonii、克鲁维毕赤酵母(Pichia kluyveri)、P. sporocuriosa和异常威克汉姆酵母(Wickerhamomyces anomalus) 5种类型的可培养非酿酒酵母。【结论】刺梨果实上存在着丰富的非酿酒酵母菌资源,研究刺梨自然发酵过程中非酿酒酵母多样性,为酵母资源开发和利用奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号