首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the shoot apex upon leaf and bud formationin the fern Dryopteris aristata has been investigated by furtherexperiments on puncturing the apical cell. When the apical cellgroup is damaged, leaf primordia, which may be orientated abnormally,continue to be formed on the meristem, but one or more budsmay also arise. The observations reported here indicate thata zone at the periphery of the apical meristem is particularlyreactive when the apical cell group is damaged, the majorityof buds being induced in this region. The extent of damage tothe apex may affect the sequence of organogenesis: when damageis extensive buds tend to be formed immediately, subsequentprimordia developing as leaves; when the damage is confinedto the apical cell, or extends to only a few of its segments,bud formation tends to be delayed. It is concluded that the effect of the apical cell on organformation is exercised through the growth and organization ofthe apex as a whole.  相似文献   

2.
BATTEY  N H; LYNDON  R F 《Annals of botany》1984,54(4):553-567
When plants of Impatiens balsamina L were subjected to 5 shortdays and then re-placed in long days, they began to form a terminalflower and then reverted to vegetative growth at this terminalshoot apex The onset of flowering was accompanied by an increasein the rate of initiation of primordia, an increase in the growthrate of the apex, a change in primordium arrangement from spiralto whorled or pseudo-whorled, a lack of internodes, and a reductionm the size at initiation of the primordia and also of the stemfrusta which give rise to nodal and internodal tissues On reversion,parts intermediate between petals and leaves were formed, followedby leaves, although in reverted apices the size at initiationand the arrangement of primordia remained the same as in thefloweing apex The apical growth rate and the rate of primordiuminitiation were less in the reverted apices than in floral apicesbut remained higher than in the original vegetative apex Sincethe changes in apical growth which occur on the transition toflowering are not reversed on reversion, the development oforgans as leaves or petals is not directly related to the growthrate of the apex, or the arrangement, rate of initiation orsize at initiation of primordia Impatiens balsamina L, flower reversion, evocation, phyllotaxis, shoot meristem  相似文献   

3.
Impatiens balsamina L. was induced to flower by exposure to5 short days and then made to revert to vegetative growth byreturn to long days. After 9 long days reverted plants wereinduced to re-flower by returning them to short days. Petalinitiation began immediately and seven primordia already presentdeveloped into petals instead of into predominantly leaf-likeorgans. However, the arrangement of primordia at the shoot apex,their rate of initiation and size at initiation remained unchangedfrom the reverted apex, as did apical growth rate and the lengthof stem frusta at initiation. The more rapid flowering of thereverted plants than of plants when first induced, and the lackof change in apical growth pattern, imply that the revertedapices remain partially evoked, and that the apical growth patternand phyllotaxis typical of the flower, and already present inthe reverted plants, facilitate the transition to flower formation. Impatiens balsamina, flower reversion, partial evocation, shoot meristem, determination, leaf development  相似文献   

4.
The content of endogenous gibberellins was estimated in leaves adjacent to the individual nodes ofBryophyllum crenatum in five ontogenetic periods (July 10, August 12, September 17, October 22, and December 8). Their content decreased from the stem base to the apex when 5 to 7 leaf pairs were developed (July 10 and August 12). Before transition to the generative state when 8 leaf pairs were formed (Sept. 17 and Oct. 22) the content of gibberellins was gradually increased in the apical leaves and decreased in the basal ones. This change resulted in the increasing gradient of leaf gibberellins from the stem base to the apex just before flowering (Dec. 8). The content of endogenous gibberellins increases during the leaf ontogenesis up to the beginning of its senescence. This trend occurs first in the basal leaves (I –III) where the initial increase is followed by the decline in the gibberellin content. On the other hand gibberellins in leaves derived from the apical nodes (VII–VIII) only gradually increase in the course of leaf ontogenesis.  相似文献   

5.
The growth and development of the main stem and the two uppermostaxillary apices of maize were studied during the period fromemergence until flowering. Plants were grown in the field undervarying levels of applied nitrogen fertilizer at two times ofsowing. The effects of daylength were isolated from those oftemperature by making comparisons of growth and developmenton a thermal time basis. The growth and development of the terminal (male) apex and thetwo uppermost axillary (female) apices followed the same patterns,with apex volumes increasing curvilinearly with increase innumber of leaf or husk primordia. The RGR(relative growth rateof volume) of the terminal apex was, however, only approximatelyone-tenth of the axillary apices. There was no difference ingrowth and development between the first and second axillaryapices before flowering: other factors, such as accumulationof dry weight, rather than primordia production, must be responsiblefor an axillary apex's potential to bear grain. Applied N, andto a lesser extent short days, increased the rates of growthand development of all the apices. For example, applied N increasedthe RGR (volume) of the apical domes, and the rate of productionof spikelet primordia, by about 25%. All axillary apices and treatments showed a single relationshipbetween number of spikelets and surface area of the ear: a favourableenvironment (e.g. high N) simply accelerated the progressionof spikelet production and area expansion along this singlepath. We conclude that this path is probably determined geneticallyand that N and time of sowing influence potential yield of maizethrough effects on the surface area of the ear but not on thedensity of spikelets formed. Key words: Maize, inflorescence, N application, daylength, temperature, apex volume  相似文献   

6.
During the growth of a single developing vegetative apex ofVinca major, both the orientation and frequency of cell divisions,and the pattern of cell expansion, were observed using a non-destructivereplica technique. Micrographs taken at daily intervals illustratethat the central region of the apical dome remains relativelyinactive, except for a phase of cell division which occurs after2 d of growth. The majority of growth takes place at the proximalregions of the dome from which develop the successive pairsof leaves. The developing leaf primordia are initiated by aseries of divisions which occur at the periphery of the centraldome and are oriented parallel to the axis of the subsequentleaves. The cells which develop into the outer leaf surfaceof the new leaves undergo expansion and these cells divide allowingfor the formation of the new leaf. This paper describes thefirst high-resolution sequential study of cell patterns in asingle developing plant apex. Sequential development, cell division, expansion patterns, SEM, Vinca major, apical dome, leaf primordium, leaf initiation  相似文献   

7.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

8.
Two kinds of size change occur in the apical dome of Agropyronrepens during development of the shoot. A cyclic increase anddecrease in size results from the production of a new stem segmentand associated leaf primordium during each plastochron. A progressiveincrease and then decrease in size, which occur over a periodof several plastochrons, is attributable to discrepancies betweenthe size increment during each plastochron and the size of thestem segment formed at the end of the plastochron. The volumedoubling time of the dome remains constant at approximatelyone plastochron. Fluctuations in mean cell generation time correlatewith changes in mean cell volume and do not contribute to thesize changes of the dome. Agropyron repens (L.), Beauv, couch grass, shoot apex, cell growth, cell divisions  相似文献   

9.
LYNDON  R. F. 《Annals of botany》1982,49(3):281-290
In the apical dome of the pea shoot apex the axis of growthof the epidermal cells becomes predominantly longitudinal inthe I1 region one plastochron before a leaf is initiated, andthis orientation persists into the young primordium. In contrast,in the underlying, non-epidermal cells the growth axis in theI1 region becomes randomized half a plastochron before leafinitiation, but in the young primordium it becomes the sameas in the epidermis. The initiation of a leaf primordium thereforetakes place without any major change in the orientation of growthaxes in the epidermis. A controlling role for the epidermisis therefore suggested. No marked reorientation of the growthaxis occurs on the sides of the newly initiated primordium.The shape of the young primordium can be related to the differentialrates of growth and division within it rather than to changesin growth orientation. Pisum sativum, pea, shoot apex, meristem, growth, epidermis, polarity  相似文献   

10.
High soil resistance to root penetration (measured as penetrometerresistance, Rs slows down leaf growth and reduces mature leafsize in wheat seedlings {Triticum aestivum L.). Underlying changesin the kinetics of cell partitioning and expansion and in thesize and organization of mature cells were reported in companionpapers (Beemster and Masle, 1996; Beemster et al., 1996). Inthe present study, the relationships between apex growth, primordiuminitiation and expansion were analysed for plants grown at contrastingRs, focusing on a leaf whose whole development proceeded afterthe onset of root impedance (leaf 5). High Rs reduced the rates of apex and leaf development, butdid not appear to have immediate effects on the pattern of developmentof the newly initiated phytomers. During an initial short period,the rate of development of a leaf primordium and associatednode were related to plastochronic age, according to similarrelationships (slopes) at the two Rs. Effects on developmentalpatterns were first detected on phytomer radial expansion duringplastochron 2. The ontogenetic pattern of leaf elongation wasaffected later, during the next few plastochrons preceding leafemergence (‘post-primordial stage’). It is concludedthat a reduction in the number of formative divisions and inthe number of proliferative cells along the intercalary mer-istemreported earlier (Beemster and Masle, 1996; Beemster et al.,1996) is not related to the size of the apical dome at leafinitiation nor to the size and number of meristematic cellsinitially recruited to the leaf primordium, which were all unaffectedby Rs. Rather they are generated at the primordial and post-primordialstages. Key words: Wheat, apex development, leaf primodium development, mature leaf width, root impedance  相似文献   

11.
Bostrack  Jack M. 《Annals of botany》1993,72(4):341-347
Shoot apex, leaf and stem growth parameters for four speciesof deciduous trees were measured. Only in elm was there a correlationbetween the size of shoot apical meristems and mature leaves.In ash, basswood and cottonwood there was no significant differencebetween size of shoot apices of sucker and canopy branches,despite significant differences in lamina size. In the suckerbranches of all species studied there occurred an early, lateralexpansion of the subapical region of the shoot apical meristem.This correlated well with the greater diameter of stem and pithregions of sucker branches. In addition, the season's annualring of xylem was greater in basswood, cottonwood and elm. Diametersof vessel elements were greater in sucker than canopy branchesin three of the four species. Total branch and internode andnumber of nodes per branch were significantly greater for suckerbranches than canopy growth of all species studied. A hypothesis is proposed to explain the development of the verylarge surface area of leaves on sucker branches. This hypothesisis based on the position of sucker branches in relation to theroot system and involves differences in water stress known tobe present in all plants.Copyright 1993, 1999 Academic Press Sucker leaves, canopy leaves, Fraxìnus pennsylvanica Marsh, green ash, Ulmus amerìcana L., American elm, Populus deltoides Marsh, cottonwood, Tilia americana, basswood  相似文献   

12.
Rates of Cell Division in the Shoot Apical Meristem of Pisum   总被引:3,自引:0,他引:3  
LYNDON  R. F. 《Annals of botany》1970,34(1):1-17
The relative rates of cell division in different regions ofthe pea shoot apical meristem were obtained by measuring theincrease in the numbers of metaphases following applicationof colchicine to the plants. Absolute values for the rates ofcell division could be calculated since the average rate ofcell division for the whole apex was known. Measurements ofthe rates of cell division were obtained at defined intervalsduring the course of a single plastochron. Within each regionof the apex the rate of cell division did not change more thanabout two-fold throughout the plastochron. There was very littleor no increase in the rate of cell division associated withleaf initiation. The formation of a leaf primordium and thesubsequent growth of the apical dome apparently result fromchanges in the direction of growth rather than changes in therates of growth. Three main regions were discernible withinthe apical meristem: a region with a slow rate of cell divisionin the apical dome, a region of a faster rate of cell divisionat the base of the apical dome and at the site of initiationof procambial strands, and a region of an intermediate rateof cell division in the newly initiated leaf primordium andthe adjacent part of the shoot axis.  相似文献   

13.
We examined effects of nitrogen (N) supply on leaf emergenceof spring wheat (Triticum aestivum L.) grown in sand with nutrientsolution containing different N concentrations (9NO3: 1NH4).In expt 1, the cultivar 'Gamenya' received nutrient solutiontwice weekly containing a constant N supply ranging from 50to 2400 µM N. In expts 2 and 3, cultivars 'Aroona' and'Gamenya' were irrigated hourly with nutrient solution containingeither low (L = 50 µM N) or high (H = 2000 µM N)N supply. In expt 2, the N supply to half of the plants receivingL and H was changed at the double ridge stage of apical development,producing plants receiving LL, LH, HL and HH. In expt 3, N supplywas changed firstly when the main stem apex was vegetative (oneto two leaves) and secondly when the main stem apex was at doubleridge stage (four to five leaves), producing plants receivingLLL, LHL, HLH and HHH. Leaves on the main stem and primary tillerswere counted. Rate of leaf emergence was estimated from regressionof number of leaves against thermal time; the phyllochron wascalculated as 1/ rate of emergence. Severely N-deficient plants (which had at least a 60% reductionin shoot dry weight) had slower rates of leaf emergence (expt1). Fluctuating N supply sometimes, but not always, changedthe rate of leaf emergence (expts 2 and 3). The N supply beforedouble ridge stage had bigger effects on the phyllochron thanthat afterwards (expt 3). The phyllocrons of the main stemswere generally lower than those of tillers, with a greater differencebetween stems in N-deficient plants. Low N supply at the vegetativeapex stage decreased the total number of leaves on the mainstem, while low N supply after double ridge did not.Copyright1994, 1999 Academic Press Nitrogen, stress, spring wheat, Triticum aestivum, leaf emergence, phyllochron, apical development  相似文献   

14.
C.  HUYGHE 《Annals of botany》1991,67(4):429-434
The winter growth of winter white lupin (cv. Lunoble) was investigated.Over three consecutive years, 1987–1989, it was sown atdifferent times at Lusignan (France) and in 1989, at nine differentlocations with various sowing times. The production of primordia,the vernalization requirements and the final number of leaveson the main stem were related to field measurements of dailymaximum and minimum temperatures. A statistical model for the main apex growth with a system oftwo equations was developed, with a threshold level for leafprimordia production at 3 °C. The number of leaf primordiaproduced by a vegetative apex (y) in terms of the cumulativesums of temperature over 3 °C (x) followed the curvilinearregression y = 4.76 + 00268x + 00000156x2. The upper and lowertemperature limits for vernalization were estimated as 14 andI °C respectively. The vernalization requirements of a vegetative apex (y) decreasedwhen the number of initials produced (x) increased accordingto the negative exponential regression y = exp (7.2 + 002626.x). The two equations were used for the prediction of the finalnumber of leaves of a lupin crop. The predictive accuracy ofthe model was checked against independent data. The agreementbetween observed and predicted final leaf number was often close,but some deviations did occur with low leaf number. The modeldescribed most of the growth phenomena which occur during thephase sowing to floral initiation of the main stem of a winterlupin crop, and its possible uses are discussed. Lupinus albus L., white lupin, growth, model, vernalization, primordia, apex, thermal time  相似文献   

15.
Explants from the shoot apex of the tomato, comprising the apicaldome and youngest primordium together with small amounts ofsub-apical tissue were cultured for periods of 1 to 4 plastochrons.By the use of a simple parameter, the axillary distance, thegrowth-rate could be accurately monitored throughout each plastochron. Gibberellic acid, coconut milk, and kinetin, in addition tosucrose and inorganic salts, all promoted growth of the apex;a combination of gibberellic acid and coconut milk gave thefastest growth. Temperature had a large effect on the growth-ratewith an in vitro Q10 of 2.1 contrasted with an in vivo Q10 of1.2 over the range of 15 to 25 ?C. On gibberellic acid and coconutmilk at 15 ?C two-thirds of the in vivo growth--rate was sustainedin culture for two plastochrons after which the growth-rategradually declined; at 20 and 25 ?C growth-rates slightly higherthan in vivo rates were sustained for 1 plastochron before amore rapid decline. The anatomy of these in vitro apices wasnormal for 1? plastochrons after which there were small increasesin cell volume in the developing primordium. Reducing the amount of sub-apical tissue drastically reducedthe growth rate but had little effect on the responses to gibberellicacid and coconut milk. Explants are considered to be useful material for studying thechanges that take place in the apex during the course of 1 or2 plastochrons, but inadequate on the media tested for experimentsinvolving longer periods of growth. Explants also provide asensitive assay system for the effects of growth factors onthe rate of shoot apical growth.  相似文献   

16.
HUYGHE  C. 《Annals of botany》1991,67(5):429-434
The winter growth of winter white lupin (cv. Lunoble) was investigated.Over three consecutive years, 1987–1989, it was sown atdifferent times at Lusignan (France) and in 1989, at nine differentlocations with various sowing times. The production of primordia,the vernalization requirements and the final number of leaveson the main stem were related to field measurements of dailymaximum and minimum temperatures. A statistical model for the main apex growth with a system oftwo equations was developed, with a threshold level for leafprimordia production at 3°C. The number of leaf primordiaproduced by a vegetative apex (y) in terms of the cumulativesums of temperature over 3°C (x) followed the curvilinearregression y = 4.76+ 0.0268x + 0000015 6x2. The upper and lowertemperature limits for vernalization were estimated as 14 and1°C respectively. The vernalization requirements of a vegetative apex (y) decreasedwhen the number of initials produced (x) increased accordingto the negative exponential regression y = exp (7.2— 0.02626.x). The two equations were used for the prediction of the finalnumber of leaves of a lupin crop. The predictive accuracy ofthe model was checked against independent data. The agreementbetween observed and predicted final leaf number was often close,but some deviations did occur with low leaf number. The modeldescribed most of the growth phenomena which occur during thephase sowing to floral initiation of the main stem of a winterlupin crop, and its possible uses are discussed Lupinus albus L, white lupin, growth, model, vernalization, primordia, apex, thermal time  相似文献   

17.
Plants of three species of Marsilea (M. vestita, M. villosa, M. drummondii) were grown in sterile culture under controlled conditions, and stem apices were sampled at one of the three heteroblastic leaf forms typical of this plant: spatulate, bifid, or quadrifid leaves. Statistical analyses were made of the relationship between the area of the apical cell and the leaf form which the plant produces under varied growth conditions. For all three species there is a statistically significant correlation (1% level) between apical cell area and leaf form. The analysis indicates that 83% of the variation in apical cell area in Marsilea vestita, 52% in M. villosa, and 54% in M. drummondii can be related to the change in leaf form. An increase in the glucose concentration of the culture medium increases the average apical cell area, and the addition of the protein synthesis inhibitor 2-thiouracil at concentrations of 10 mg/liter and 25 mg/liter decreases the average apical cell area. A certain average apical cell area is necessary for the production of a particular leaf form in the series. The area is a relative rather than an absolute size under any one particular growth condition. Any growth condition which inhibits or reverses the increase in apical cell size (which is typical of the normal growth pattern) will inhibit or reverse the normal heteroblastic series. Under constant conditions, the average size at which particular leaf forms develop appears to be species specific. These results confirm a generally held idea that the apex size is related to the heteroblastic leaf series, and they indicate that the area of the apical cell is the key factor rather than the volume or the number of cells of the apex. Undoubtedly the area of the apical cell is only a reflection of the physiological or morphological characteristics of the apical meristem that underlie the heteroblastic leaf series and which currently do not appear to lend themselves to more direct quantitative analysis.  相似文献   

18.
IMAICHI  RYOKO 《Annals of botany》1989,63(2):249-256
The morphogenesis of the leaf sheath was studied in Botrychiumstrictum and B. virginianum of subgenus Osmundopteris. In thetwo species, the leaf primordium is initiated on the lowestpart of a ridge which is formed by partial growth of the shootapex. The leaf primordium first grows to cover the shoot apexalmost entirely except for a slit-like opening. The openingis formed by the frontal rim of the growing leaf primordium,i.e. the leaf margin, and the rear part of the shoot apex. Asthe leaf grows, the leaf margin elongates and takes a reverseV-shape. On both lateral edges of the leaf margin, marginalgrowth occurs to form the lobes of the leaf sheath. Such marginalgrowth and a small amount of growth on the uppermost portionof the sheath is involved in the leaf sheath formation in B.cirginianum, while only marginal growth takes place in B. strictum.The leaf sheath of Botrychium virginianum, in comparison tothat of B. strictum, has a morphogenesis which is more similarto the completely covering leaf sheath of subgenera Botrychiumand Sceptridhim. Based on the morphogenesis of the leaf sheath,systematic relationships in subgenus Osmundopteris are discussed Botrychium virginianum, B. strictum, subgenus Osmundopteris, leaf ontogeny, leaf sheath formation, scanning electron microscopy, light microscopy  相似文献   

19.
Periclinal cell divisions in vegetative shoot apices of Pisumand Silene were recorded from serial thin sections by mappingall the periclinal cell walls formed less than one cell cyclepreviously. The distribution of periclinal divisions in theapical domes corresponded to the distributions subsequentlyoccurring in the apices when the young leaf primordia were forming.In Pisum, periclinal divisions were almost entirely absent fromthe I1 region of the apical dome for half a plastochron justafter the formation of a leaf primordium and appeared, simultaneouslyover the whole of the next potential leaf site, about half aplastochron before the primordium formed. In Silene periclinaldivisions seemed to always present in the apical dome at thepotential leaf sites and also round the sides of the dome wherethe ensheathing leaf bases were to form. Periclinal divisionstherefore anticipated the formation of leaf primordia by occuring,in Pisum about one cell cycle and in Silene two or more cellcycles, before the change in the direction of growth or deformationof the surface associated with primordial initiation. Pisum, Silene, planes of cell division, orientation of cell walls, leaf primordia, shoot apical meristem, plastochron  相似文献   

20.
Effects of shading the first leaf on development of the apicalregion were investigated by examining the growth of leaf primordiaand the apical dome in the early seedling stages. Shade treatment affects the size of the dome; it was shown thatvalues for height, width, and volume of the dome of 12-day controlplants were always higher than for shaded plants. Primordialgrowth, in terms of length and dry weight, was reduced by shadeand growth in dry weight of the second, third, and fourth leaveswas shown to be dependent on photosynthetic production by thefirst leaf. Incorporation of 14C in the apical region was detected by autoradiographyon day 6 and increased with age. Transfer of assimilated carbonfrom the first leaf to the apex occurred during the first 3h after exposure to 14CO2. On a unit dry-weight basis it isshown that the third and fourth leaves and apex incorporatedproportionately more labelled carbon than the larger older organssuch as the, second leaf. Shade treatment reduced incorporationinto the apical region and this is associated with the failureof the apex to grow over the period up to day 15. Evidence isprovided to show that in control plants the second leaf suppliescarbon to the apex from about day 12. The crucial importanceof the contribution of the first leaf to plant development isdiscussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号