首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
N-acylethanolamines including anandamide (an endogenous ligand of cannabinoid receptors) are biosynthesized from N-acyl-phosphatidylethanolamine (PE) by a phosphodiesterase of the phospholipase D type. The enzyme partially purified from the particulate fraction of rat heart hydrolyzed N-palmitoyl-PE to N-palmitoylethanolamine with a specific activity of 50 nmol/min per mg protein at 37 degrees C in the presence of 10 mM CaCl2. We found that the enzyme was highly activated in dose-dependent manner by polyamines like spermine, spermidine, and putrescine. Spermine was the most potent with an EC50 value around 0.1 mM, and increased the specific enzyme activity 27 fold up to 53 nmol/min per mg protein. However, a synergistic effect of spermine and the known activator (Ca2+ or Triton X-100) was not observed. The spermine-stimulated enzyme was also active with N-arachidonoyl-PE (a precursor of anandamide). Thus, polyamines may function as endogenous activators to control the biosynthesis of anandamide and other N-acylethanolamines.  相似文献   

2.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), are hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase. Moreover, we found another amidohydrolase catalyzing the same reaction only at acidic pH, and we purified it from rat lung (Ueda, N., Yamanaka, K., and Yamamoto, S. (2001) J. Biol. Chem. 276, 35552-35557). Here we report complementary DNA cloning and functional expression of the enzyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" from human, rat, and mouse. The deduced primary structures revealed that NAAA had no homology to fatty acid amide hydrolase but belonged to the choloylglycine hydrolase family. Human NAAA was essentially identical to a gene product that had been noted to resemble acid ceramidase but lacked ceramide hydrolyzing activity. The recombinant human NAAA overexpressed in HEK293 cells hydrolyzed various N-acylethanolamines with N-palmitoylethanolamine as the most reactive substrate. Most interestingly, a very low ceramide hydrolyzing activity was also detected with NAAA, and N-lauroylethanolamine hydrolyzing activity was observed with acid ceramidase. By the use of tunicamycin and endoglycosidase, NAAA was found to be a glycoprotein. Furthermore, the enzyme was proteolytically processed to a shorter form at pH 4.5 but not at pH 7.4. Expression analysis of a green fluorescent protein-NAAA fusion protein showed a lysosome-like distribution in HEK293 cells. The organ distribution of the messenger RNA in rats revealed its wide distribution with the highest expression in lung. These results demonstrated that NAAA is a novel N-acylethanolamine-hydrolyzing enzyme that shows structural and functional similarity to acid ceramidase.  相似文献   

3.
Anandamide, an endogenous ligand for cannabinoid receptors, loses its biological activities when it is hydrolyzed to arachidonic acid and ethanolamine by anandamide amidohydrolase. We overexpressed a recombinant rat enzyme with a hexahistidine tag in a baculovirus-insect cell expression system, and purified the enzyme with the aid of a Ni-charged resin to a specific activity as high as 5.7 micromol/min/mg protein. The purified recombinant enzyme catalyzed not only the hydrolysis of anandamide and palmitoylethanolamide, but also their reverse synthetic reactions. In order to attain an equilibrium of the anandamide hydrolysis and its reverse reaction within 10 min, we utilized a large amount of the purified enzyme. The equilibrium constant ([arachidonic acid][ethanolamine])/([anandamide][water]) was calculated as 4x10(-3) (37 degrees C, pH 9.0). These experimental results with a purified enzyme preparation quantitatively confirmed the reversibility of the enzyme reaction previously observed with crude enzyme preparations.  相似文献   

4.
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.  相似文献   

5.
Several cannabinoids elicit systemic vasodilation, mainly via CB1 cannabinoid and vanilloid receptors. However, effects in the pulmonary circulation are unknown. Using the isolated, ventilated, buffer-perfused rabbit lung, we have shown that the endocannabinoids arachidonyl ethanolamide (anandamide) and 2-arachidonyl glycerol (2-AG) dose-dependently increase pulmonary arterial pressure (+19.9 +/- 3.4 mmHg, 5 microM, and +39.5 +/- 10.8 mmHg, 0.4 microM, respectively). 2-AG induced lung edema. The CB1 receptor antagonist AM-251 (0.1 and 5 microM) and the VR1 vanilloid receptor antagonist capsazepine (10 microM) failed to reduce anandamide's effects. The metabolically stable anandamide and 2-AG analogs R-methanandamide and noladin ether, Delta9-tetrahydrocannabinol, and the synthetic cannabinoid HU-210, which is no arachidonic acid product, were without effect. The unspecific cyclooxygenase (COX) inhibitor aspirin (100 microM, P < 0.001) and the specific COX-2 inhibitor nimesulide (10 microM, P < 0.01) completely prevented pulmonary hypertension after 5 microM anandamide. COX-2 RNA was detected in rabbit lungs. The synthetic thromboxane receptor antagonist SQ 29,548 was without effect, but the specific EP1 prostanoid receptor antagonist SC-19220 (100 microM) inhibited the pressure increase after anandamide (P < 0.05). PCR analysis detected fatty acid amidohydrolase (FAAH), an enzyme that degrades endocannabinoids, in rabbit lung tissue. Furthermore, the specific FAAH inhibitor methyl arachidonyl fluorophosphonate (0.1 microM) blocked pressure effects of anandamide (P < 0.01). Finally, anandamide (99 +/- 55 pmol/g) and 2-AG (19.6 +/- 8.4 nmol/g) were found in native lungs. We conclude that anandamide increases pulmonary arterial pressure via COX-2 metabolites following enzymatic degradation by FAAH into arachidonic acid products.  相似文献   

6.
Bioactive N-acylethanolamines include anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory), and N-oleoylethanolamine (an anorexic). In the brain, these molecules are formed from N-acylphosphatidylethanolamines (NAPEs) by a specific phospholipase D, called NAPE-PLD, or through NAPE-PLD-independent multi-step pathways, as illustrated in the current study employing NAPE-PLD-deficient mice. Although N-acylethanolamine plasmalogen (1-alkenyl-2-acyl-glycero-3-phospho(N-acyl)ethanolamine, pNAPE) is presumably a major class of N-acylethanolamine phospholipids in the brain, its enzymatic conversion to N-acylethanolamines is poorly understood. In the present study, we focused on the formation of N-acylethanolamines from pNAPEs. While recombinant NAPE-PLD catalyzed direct release of N-palmitoylethanolamine from N-palmitoylethanolamine plasmalogen, the same reaction occurred in the brain homogenate of NAPE-PLD-deficient mice, suggesting that this reaction occurs through both the NAPE-PLD-dependent and -independent pathways. Liquid chromatography-mass spectrometry revealed a remarkable accumulation of 1-alkenyl-2-hydroxy-glycero-3-phospho(N-acyl)ethanolamines (lyso pNAPEs) in the brain of NAPE-PLD-deficient mice. We also found that brain homogenate formed N-palmitoylethanolamine, N-oleoylethanolamine, and anandamide from their corresponding lyso pNAPEs by a Mg(2+)-dependent "lysophospholipase D". Moreover, the brain levels of alkenyl-type lysophosphatidic acids, the other products from lyso pNAPEs by lysophospholipase D, also increased in NAPE-PLD-deficient mice. Glycerophosphodiesterase GDE1 can hydrolyze glycerophospho-N-acylethanolamines to N-acylethanolamines in the brain. In addition, we discovered that recombinant GDE1 has a weak activity to generate N-palmitoylethanolamine from its corresponding lyso pNAPE, suggesting that this enzyme is at least in part responsible for the lysophospholipase D activity. These results strongly suggest that brain tissue N-acylethanolamines, including anandamide, can be formed from N-acylated plasmalogen through an NAPE-PLD-independent pathway as well as by their direct release via NAPE-PLD.  相似文献   

7.
An enzyme responsible for the deacylation of beta-citryl-L-glutamate to citrate and glutamate has been characterized in rat testis. The enzyme required manganese ion for full activity and was strongly inhibited by nucleotides such as ATP or GTP. The activity was localized in the particulate fractions. The enzyme favored N-formyl-L-glutamate greater than beta-citrly-L-glutamate greater than beta-citryl-L-glutamine in a decreasing order. The amidohydrolyase activity was highest in the testis and lung, a moderate activity was detected in heart, kidney and intestine, and low in brain, thymus, stomach, skeletal muscle, spleen and liver. These findings suggest that the amidohydrolase is different from any of amidohydrolases reported so far, amidohydrolase I (EC 3.5.1.14), II (EC 3.5.1.15), III, N-acetyl-lysine deacylase (EC 3.5.1.17) and N-acetyl-beta-alanine deacetylase (EC 3.5.1.21), and various peptidases.  相似文献   

8.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory substance), and N-oleoylethanolamine (an anorexic substance) are enzymatically hydrolyzed to fatty acids and ethanolamine. Fatty acid amide hydrolase plays a major role in this reaction. In addition, we cloned cDNA of an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" [K. Tsuboi, Y.-X. Sun, Y. Okamoto, N. Araki, T. Tonai, N. Ueda, Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase, J. Biol. Chem. 280 (2005) 11082-11092]. Previous biochemical analyses suggested the expression of NAAA in macrophage cells and various rat tissues including lung and brain. To clarify the physiological significance of NAAA, here we immunochemically studied NAAA for the first time. We developed an antibody specific for rat NAAA, and by Western blotting revealed that NAAA is glycosylated and subjected to specific proteolysis. In alveolar macrophages isolated from rat lung, NAAA was immunocytochemically localized in lysosomes. In the whole lung tissue, only alveolar macrophages were immunostained for NAAA. Conformably, the mRNA and protein levels and activity of NAAA in alveolar macrophages were much higher than those in the whole lung tissue. In brain, intraventricular macrophages were positively stained with anti-NAAA antibody, while microglia appeared to be negative. These results strongly suggested the importance of macrophages as an expression site of NAAA in rat tissues.  相似文献   

9.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   

10.
N-acylethanolamines (NAEs) are a class of bioactive lipid molecules in animal tissues, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. Enzymatic hydrolysis of NAEs is considered to be an important step to regulate their endogenous levels. Lysosomal NAE-hydrolysing acid amidase (NAAA) as well as fatty acid amide hydrolase (FAAH) is responsible for this reaction. Here, we report relatively high expression of NAAA in human prostate cancer cells (PC-3, DU-145 and LNCaP) and prostate epithelial cells (PrEC), with the highest mRNA level in LNCaP cells. FAAH and the NAE-forming enzyme N-acylphosphatidylethanolamine-hydrolysing phospholipase D (NAPE-PLD) were also detected in these cells. NAAA activity in LNCaP cells could be distinguished from coexisting FAAH activity, based on their different pH dependency profiles and specific inhibition of FAAH activity by URB597. These results showed that both the enzymes were functionally active. We also found that NAAA was partly secreted from LNCaP cells, which underlined possible usefulness of this enzyme as a biomarker of prostate cancer.  相似文献   

11.
12.
Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type manner (Ki(slope) 1.3 microM; Ki(intercept) 44 microM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl)linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.  相似文献   

13.
Anandamide, an endogenous cannabinoid receptor ligand, was rapidly metabolized by Tetrahymena pyriformis in vivo. Metabolic products were mainly phospholipids as well as neutral lipids, including small amounts of free arachidonic acid. Anandamide amidohydrolase activity was detected in the culture medium by the release of [3H]arachidonic acid from [3H]anandamide, in a time- and concentration-dependent manner. Kinetic experiments demonstrated that the released enzyme had an apparent K(m) of 3.7 microM and V(max) 278 pmol/min/mg protein. Amidohydrolase activity was maximal at pH 9-10, was abolished by phenylmethylsulfonyl fluoride and was Ca(2+)- and Mg(2+)-independent. Thus, T. pyriformis is capable of hydrolyzing anandamide in vivo and releasing amidohydrolase activity.  相似文献   

14.
Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type manner (Ki(slope) 1.3 µM; Ki(intercept) 44 µM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl)linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.  相似文献   

15.
Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system.  相似文献   

16.
N-carbamoyl-l-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50°C, respectively. The enzyme required Mn2+ ion for activity expression and was inhibited by EDTA, Hg2+ and sulfhydryl reagents. The enzyme was strictly specific for the l-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-l-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel l-carbamoylase, different from the known l-carbamoylases.  相似文献   

17.
Bioactive N-acylethanolamines including the endocannabinoid anandamide are known to be hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). In addition, we recently cloned an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)", which is active only at acidic pH [Tsuboi, Sun, Okamoto, Araki, Tonai, Ueda, J. Biol. Chem. 285 (2005) 11082-11092]. However, physiological roles of NAAA remained unclear. Here, we examined a possible contribution of NAAA to the degradation of various N-acylethanolamines in macrophage cells. NAAA mRNA as well as FAAH mRNA was detected in several macrophage-like cells, including RAW264.7, and mouse peritoneal macrophages. The homogenates of RAW264.7 cells showed both the NAAA and FAAH activities which were confirmed with the aid of their respective specific inhibitors, N-cyclohexanecarbonylpentadecylamine (CCP) and URB597. As analyzed with intact cells, RAW264.7 cells and peritoneal macrophages degraded anandamide, N-palmitoylethanolamine, N-oleoylethanolamine, and N-stearoylethanolamine. Pretreatment of the cells with CCP or URB597 partially inhibited the degradation, and a combination of the two compounds caused more profound inhibition. In contrast, the anandamide hydrolysis in mouse brain appeared to be principally attributable to FAAH despite the expression of NAAA in the brain. These results suggested that NAAA and FAAH cooperatively degraded various N-acylethanolamines in macrophages.  相似文献   

18.
Rhodococcus globerulus K1/1 was found to express an inducible (S)-specific N-acetyl-2-amino-1-phenyl-4-pentene amidohydrolase. Optimal bacterial growth and amidohydrolase expression were both observed at about pH 6.5. Purification of the enzyme to a single band in a Coomassie blue-stained SDS-PAGE gel was achieved by nucleic acid and ammonium sulfate precipitation of Rhodococcus globerulus K1/1 crude extract and column chromatography on TSK Butyl-650(S) Fractogel and Superose 12HR. The amidohydrolase was purified to a homogeneity leading to a tenfold increase of the specific activity with a recovery rate of 65%. At pH 7.0 and 23 °C the enzyme showed no loss of activity after 30 days incubation. The amidohydrolase was stable up to 55 °C. The enzyme was inhibited strongly only by 10 mM Zn2+ among the tested metal cations and was inhibited 100% by 0.01 mM phenylmethanesulfonyl fluoride. The molecular weight of the native enzyme was estimated to be 92 kDa by gel filtration and 55 kDa by SDS-PAGE, suggesting a homodimeric structure. Received: 8 February 1999 / Received revision: 3 May 1999 / Accepted: 7 May 1999  相似文献   

19.
The N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 was cloned by polymerase chain reaction in plasmid pET28a and was overexpressed in Escherichia coli JM109 (DE3). However, almost 80% of the enzyme remained trapped in inclusion bodies. To facilitate the expression of the properly folded active enzyme, the chaperones GroEL/ES were coexpressed in plasmid pKY206. This resulted in a 43-fold increase in active enzyme production compared to the wild-type strain. The histidyl-tagged D-carbamoylase was purified by a single step nickel-affinity chromatography to a specific activity of 9.5 U/mg protein.  相似文献   

20.
A perfused rat liver was used to study the effects of 5-diazo-4-oxo-L-norvaline on lysosomal glycoprotein catabolism. Addition of this compound (1.0 mM) to the perfusate reduced activity of beta-aspartyl-N-acetylglucosylamine amidohydrolase by 99% in 1 h. Treated livers were unable to completely degrade endocytosed N-acetyl[14C]glucosamine-labeled asialo-alpha 1-acid glycoprotein as evidenced by a 50% reduction in radiolabeled serum glycoprotein secretion compared to controls. This decreased degradation was matched by a lysosomal accumulation of glycopeptides with the structure: GlcNAc beta(1-4)GlcNAc-Asn. The result suggested the presence of an unrecognized glycosidase in rat liver lysosomes, since this remnant was extended by one more GlcNAc residue than would have been expected after specific inactivation of the amidohydrolase. Such a novel enzyme would therefore catalyze cleavage of the N-acetylglucosamine residue at the reducing end of alpha 1-acid glycoprotein oligosaccharides only following removal of the linking Asn. The activity was then detected in lysosomal extracts by using intact asialo-biantennary oligosaccharides labeled with [3H] galactose or N-acetyl[14C]glucosamine residues as a substrate. To prevent simultaneous digestion of the material from its nonreducing end, beta-D-galactosidase in the enzyme extract was first inactivated with the irreversible active site-directed inhibitor, beta-D-galactopyranosylmethyl-p-nitrophenyltriazene. The observed di-N-acetylchitobiose cleaving activity worked optimally at pH 3.4 and was uniquely associated with the lysosomal fraction of the liver homogenate. The enzyme also cleaved triantennary chains and di-N-acetylchitobiose, but failed to hydrolyze substrates that had been reduced with NaBH4. The new glycosidase was well separated from N-acetyl-beta-D-glucosaminidase (assayed with p-nitrophenyl-beta-D-glucosaminide) by gel filtration chromatography and had an apparent molecular weight of 37,000. A similar enzyme that hydrolyzes di-N-acetylchitobiose had previously been found in extracts of human liver (Stirling, J. L. (1974) FEBS Lett. 39, 171-175).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号