首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of wild-caughtSarsia tubulosa M. Sars medusae are less dense than the surrounding water. The bell ofS. tubulosa is the buoyant structure; the tentacles and manubrium sink if cut off from the bell.S. tubulosa individuals placed in dilute seawater sink initially but recover positive or neutral buoyancy and normal activity within a couple of hours. In all cases observed animals were able to achieve positive buoyancy in seawater of 20.25 S and some individuals were able to adjust to lower salinities. In most cases where positive buoyancy was not attained within two hours the animal did not achieve positive buoyancy within twelve hours and died within that period. While the mechanism of regulation is not known, ionic pumping, possibly involving the extrusion of sulphate ion, has been suggested to be responsible for the buoyancy of mesoglea in other jellyfishes.  相似文献   

2.
In highly eutrophic ponds, buoyancy of the gas-vacuolate blue-green alga Anabaenopsis Elenkinii (Miller) was regulated by complex interactions between chemical and physical parameters, as well as by biological interactions between various trophic levels. Algal buoyancy and surface bloom formation were enhanced markedly by decreased light intensity, and to a lesser extent by decreased CO2 availability and increased availability of inorganic nitrogen. In the absence of dense populations of large-bodied Cladocera, early season blooms of diatoms and green algae reduced light availability in the ponds thus creating conditions favorable for increased buoyancy and bloom formation by A. Elenkinii. The appearance of blue-green algal blooms could be prevented by a reduced density of planktivorous fish, which allowed development of dense cladoceran populations. The cladocerans limited the growth of precursory blooms of diatoms and green algae, and given the resulting clear-water conditions, buoyancy of A. Elenkinii was reduced, and blue-green algal blooms never appeared.  相似文献   

3.
The radiation of notothenioid fishes (Perciformes) in Antarctic waters was likely the result of an absence of competition in the isolated Antarctic waters and key traits such as the production of antifreeze glycoprotein and buoyancy modifications. Although notothenioids lack a swim bladder, the buoyancy of Antarctic species, ranging from neutrally buoyant to relatively heavy, corresponds to diverse life styles. The buoyancy of South American notothenioids has not been studied. Static buoyancy was measured in adult notothenioids (n = 263, from six species of the sub-order Notothenioidei, families Bovichtidae, Eleginopidae, Nototheniidae, and Harpagiferidae) from the Beagle Channel. Measurements were expressed as percentage buoyancy (%B). Buoyancy ranged from 3.88 to 6.96% (median, 4.0–6.7%), and therefore, all species could be considered benthic consistent with previous studies that found that neutral buoyancy in notothenioids is rare. Harpagifer bispinis, Patagonotothen cornucola, and Cottoperca gobio were significantly less buoyant than Paranotothenia magellanica. The buoyancy values of most species were concordant with known habitat preferences. These data, especially the data of C. gobio (sister lineage of all other nototehnioids) and E. maclovinus (sister lineage of the Antarctic clade of notothenioids), could be useful for understanding the diversification of this feature during the notothenioid radiation.  相似文献   

4.
Synopsis Buoyancy was measured on eight species of estuarine fishes that were caught in 1 m depth or less. Mean buoyancies of the physoclists Fundulus heteroclitus, F. majalis, Cyprinodon variegatus and Leiostomus xanthurus were similar and ranged from –6.5 to –18.0 kiloPascals below atmospheric pressure at sea level. Menidia menidia and Pomatomus saltatrix measured –36.6 and –46.1 kPa, respectively. Two physostomes, Brevoortia tyrannus and Anchoa mitchilli, measured + 2.9 and –23.5 kPa, respectively, but the latter probably releases air when handled.The four most buoyant physoclist species live near the bottom in areas that receive daily tide induced currents. Negative buoyancy probably functions in them as in stream dwelling minnows and salmonids, which respond to currents by decreasing their buoyancy. The pronounced negative buoyancy of M. menidia may be a response to a preference for habitat where the currents are stronger, P. saltatrix, which can secrete gas into the swim bladder at the fastest rate known for any fish, combines high secretion (and resorption) rates with marked negative buoyancy. This enables it to quickly change depths over a wide vertical range, without overexpanding the swim bladder to cause positive buoyancy.  相似文献   

5.
Eggs of dab (Limanda limanda) and plaice (Pleuronectes platessa) were experimentally exposed to ultraviolet-B (UV-B) radiation in a solar radiation simulator. The experimental design tried to simulate present and future conditions with reference to increased UV-B exposure due to northern hemisphere ozone loss, employing mainly two scenarios, a reduction to 270 (S1) and to 180 (S2) Dobson units (DU) in single or repetitive exposures of 2, 4 or 6 h. Depending on the total dose of UV-B irradiation and the developmental stage, exposed eggs displayed loss of buoyancy as a sublethal effect, as well as increased embryo mortality and reduced viable hatch. In the single exposure experiments only under conditions of 180 DU for 6 h were effects apparent. Double exposure under conditions of 270 DU did not lead to lasting effects. At the sublethal effect level, i.e. loss of buoyancy, considerable photorepair was observed. It was concluded, that under the present general weather conditions in spring and at the present levels of environmental ozone, allowing for a reduction to 180 DU, the embryonic development of North Sea spring spawning fish is not endangered by UV-B radiation. Received in revised form: 19 June 2000 Electronic Publication  相似文献   

6.
We analyzed buoyancy characteristics (buoyancy range, gas bladder volume, and lipid content) of adult bloater, Coregonus hoyi Gill, in the Laurentian Great Lakes. Buoyancy was measured directly in individual bloater and compared with the hydrostatic pressures at the depths of capture. The results of the buoyancy comparisons suggest that C. hoyi has a buoyancy range comparable to the 'free vertical range' of movement that has been described for other fishes. The buoyancy range of bloater does not support the argument that they undergo diel vertical migrations, as suggested in earlier studies. Rather, the buoyancy range for bloater reflects the depths of neutral buoyancy and the distance above these depths at which they can maintain vertical position in the water column. The available data suggest that adult bloater are neutrally buoyant near the lake bottom, and C. hoyi with 50% positive buoyancy are at the top of their depth range. Large bloater have relatively small gas bladder volumes and a high lipid content. Based on the observed vertical distribution of large and small C. hoyi and our results, we deduced that large fish are more adept than small fish at regulating their buoyancy for prolonged stays at higher hydrostatic pressures. Lipid content for bloater was not significantly different with respect to sex or origin (wild vs. captive-raised).  相似文献   

7.
8.
We hypothesize that the pattern of cyanobacterial dominance in experimentally enriched, low-carbon lakes is related not only to the resultant N:P ratio but also to the availability of carbon for gas-vesicle synthesis. We tested this hypothesis by determining the buoyancy responses of a highly gas-vacuolate, N2-fixing cyanobacterium to P enrichment with and without induced C limitation. Enrichment of samples of Aphanizomenon schindleri (Kling et al. 1994) from blooms in Lake 227 with combinations of C, N, and P produced rapid buoyancy reductions in P treatments, reductions that were reversed within a generation time in treatments that included C or C and N as well as P. These responses are the first of their kind to be observed in experiments with lake populations of cyano-bacteria. The rapid buoyancy reductions were associated with polyphosphate accumulations in P-treated A. schindleri. Differences in buoyancy status after one generation time were linked to differences in relative gas vacuolation between samples treated with P only and samples treated with C and N as well as P. These results may explain the relative success of different types of cyanobacteria in newly enriched, low-carbon lakes. The availability of C for gasvesicle synthesis may determine whether a low N:P ratio induces N2 fixation by benthic or by planktonic cyanobacteria and whether a high NP ratio leads to dominance by non-gas-vacuolate or by highly gas-vacuolate, non-N2-fixers.  相似文献   

9.
We report the presence of an aglomerular kidney in the pelagic deep-sea fish Saccopharynx ampullaceus (Saccopharyngiformes: Saccopharyngidae). The thin kidney is unpaired and ribbon-like rostrally, while it is thicker caudally with a rod-like shape. Light microscopic observation of serial sections revealed no glomeruli at all. The kidney is composed of renal tubules, sinusoids and capillaries of the renal portal system and extensive interstitial lymphoid tissues. Each renal tubule is surrounded by well-developed renal portal sinusoids, and the tubules are well separated from each other. There is a large space dorsal to the vertebrae, similar to the situation in the closely related Eurypharynx pelecanoides. We consider that S. ampullaceus possesses an aglomerular kidney to gain neutral buoyancy. The urinary bladder of S. ampullaceus is a distinct vesicular structure, unlike that of E. pelecanoides.  相似文献   

10.
11.
In some lakes, large amounts of the potentially toxic cyanobacterium Microcystis overwinter in the sediment. This overwintering population might inoculate the water column in spring and promote the development of dense surface blooms of Microcystis during summer. In the Dutch Lake Volkerak, we found photochemically active Microcystis colonies in the sediment throughout the year. The most vital colonies originated from shallow sediments within the euphotic zone. We investigated whether recruitment of Microcystis colonies from the sediment to the water column was an active process, through production of gas vesicles or respiration of carbohydrate ballast. We calculated net buoyancy, as an indication of relative density, using the amounts and densities of the major cell constituents (carbohydrates, proteins, and gas vesicles). Carbohydrate content of benthic Microcystis cells was very low throughout the year. Buoyancy changes of benthic Microcystis were mostly a result of changes in gas vesicle volume. Before the summer bloom, net buoyancy and the amount of buoyant colonies in the sediment did not change. Therefore, recruitment of Microcystis from the sediment does not seem to be an active process regulated by internal buoyancy changes. Instead, our observations indicate that attachment of sediment particles to colonies plays an important part in the buoyancy state of benthic colonies. Therefore, we suggest that recruitment of Microcystis is more likely a passive process resulting from resuspension by wind‐induced mixing or bioturbation. Consequently, shallow areas of the lake probably play a more important role in recruitment of benthic Microcystis than deep areas.  相似文献   

12.
In stratified lakes, dominance of the phytoplankton by cyanobacteria is largely the result of their buoyancy and depth regulation. Bloom-forming cyanobacteria regulate the gas vesicle and storage polymer contents of their cells in response to interactive environmental factors, especially light and nutrients. While research on the roles of nitrogen and phosphorus in cyanobacterial buoyancy regulation has reached a consensus, evaluations of the roles of carbon have remained open to dispute. We investigated the various effects of changes in carbon availability on cyanobacterial buoyancy with continuous cultures of Microcystis aeruginosa Kuetz. emend. Elenkin (1924), a notorious bloom-former. Although CO2 limitation of photosynthesis can promote buoyancy in the short term by preventing the collapse of turgor-sensitive gas vesicles and/or by limiting polysaccharide accumulation, we found that sustained carbon limitation restricts buoyancy regulation by limiting gas vesicle as well as polysaccharide synthesis. These results provide an explanation for the positive effects of bicarbonate enrichment on cyanobacterial nitrogen uptake and bloom formation in lake experiments and may help to explain the pattern of cyanobacterial dominance in phosphorus-enriched, low-carbon lakes.  相似文献   

13.
At Chaffey Dam, New South Wales, Australia, Anabaena circinalis filaments accumulated at the surface as diurnal surface layer thermal stratification developed. Previously buoyant, homogeneously distributed colonies accumulated in the top 2 m, but a proportion lost buoyancy. Similarly, a percentage of A.circinalis suspended in bottles lost buoyancy at depths experiencing >30% surface irradiance (Io). Nutrient addition reduced the proportion of filaments that lost buoyancy following a full day of high irradiance. The greatest axial linear dimension (GALD) was measured for A.circinalis deployed in bottles at three depths in the reservoir. GALD increased in samples exposed to 1 and 30% Io by the following day. The rank order of GALD from smallest to largest grouped samples exposed to 70, 30 and 1% Io, suggesting that increasing GALD is a function of irradiance. The increased GALD of biomass units was attributed to aggregation of filaments in low light. The enlargement of biomass units increased the mean floating velocity, supporting the theory that filament aggregation may be a strategy, utilized by light-limited filaments, to increase light exposure. High irradiance increased the carbohydrate content of cells and decreased the floating velocity of filaments.   相似文献   

14.
Summary The lipip content and composition of various tissues from three species of nototheniid fish from McMurdo Sound, Antarctic have been examined in relation to their habitat and buoyancy. The pelagic midwater Dissostichus mawsoni is neutrally buoyant. It is rich in lipid which is located subcutaneously, as adipose tissue associated intimately with white muscle, and as lipid droplets within the cells of various tissues. White muscle, red muscle and liver are particularly lipid-rich, although the liver is not positively buoyant. The amount of lipid stored in the white muscle increases towards the centre of buoyancy of the fish. These deposits are documented at the anatomical, histological and ultrastructural levels. Tissues of Pagothenia borchgrevinki contain less lipid than D. mawsoni, but liver, red muscle and white muscle are still very rich in lipid. This species is cryopelagic, that is it spends most of the time in the water column just beneath the surface ice layer. It is not neutrally buoyant, but has a low weight in seawater. The tissues of the benthic Trematomus bernacchii contain only normal levels of lipid. The lipid class compositions of all three species are dominated by triacylglycerol, particularly when lipid contents are high. Serum lipids are an exception in containing high levels of the transport lipid sterol ester. The reason why Antarctic fish use triacylglycerols for buoyancy rather than was esters (as used by many myctophids) or squalene (as used by some sharks) is unclear.  相似文献   

15.
Colonial aggregation of Microcystis plays a key role in bloom formation. Limited studies have been reported about effects of environmental factors on the aggregation of Microcystis. Calcium is an important chemical element in water system. In this study, we investigated the effects of a low- (0.015 g l−1) and a high-concentration of calcium (0.100 g l−1) on the aggregation and buoyancy of a colonial strain M. aeruginosa XW01. Results show that compared to the low concentration of calcium, the high-calcium condition results in bigger colonial size, higher level of buoyancy and increased production of extracellular polysaccharides (EPS) of M. aeruginosa XW01. Increased production of EPS induced by the high-calcium concentration should contribute to the colonial aggregation and buoyancy of M. aeruginosa XW01. These results suggest that an increase in calcium concentration may be beneficial for Microcystis blooms occurring in a soft water lake.  相似文献   

16.
In a storage reservoir, which is artificially mixed in order to reduce algal and especially cyanobacterial growth, the cyanobacterium Microcystis is still present. The aim of the research was to investigate why Microcystis was able to grow in the artificially mixed reservoir. From the results it could be concluded that the large shallow area in the reservoir allows this growth. The loss of buoyancy during the day was much higher in this shallow part than in the deep part. Assuming that the loss of buoyancy was the result of a higher carbohydrate content, a higher growth rate in the shallow part may be expected. A higher received light dose by the phytoplankton in the shallow mixed part of the reservoir than in the deep mixed part explains the difference in buoyancy loss. A significant correlation between the received light dose (calculated for homogeneously mixed phytoplankton) and the buoyancy loss was found. Apparently, the Microcystis colonies were entrained in the turbulent flow in both the shallow and the deep part of the reservoir. With a little higher stability on one sampling day, due to the late start of the artificial mixing, the loss of buoyancy at the deep site was higher than on the other days and almost comparable to the loss at the shallow site. Although the vertical biomass distribution and the temperature profiles showed homogeneous mixing, the colonies in the upper layers apparently received a higher light dose than those deeper in the water column. Determination of the buoyancy state of cyanobacteria appeared to be a valuable method to investigate the light history and hence their entrainment in the turbulent flow in the water column.  相似文献   

17.
Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl‐sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate‐ballast strategy for vertical migration for this species, but argues against the theory of replacement of low‐ or high‐density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton.  相似文献   

18.
A new very rare species, Fuirena somaliensis, is described from the lowlands of South Somalia below 150 m. The new species belongs to the F. ciliaris complex and has bulliform inner perianth‐segments and thus a similar adaptation to buoyancy and dispersal by water as four other African species.  相似文献   

19.
Turbinaria ornata (Turner) J. Agardh is a tropical alga that disperses by detached, reproductively mature floating fronds. Material properties (breaking stress, breaking extension), buoyancy, and the proportion of reproductive tissue per frond were measured for juvenile, adult, and old fronds of T. ornata. Correlations between these factors indicate that as fronds age and become more reproductively mature, the tissue in their stipes (where they break) becomes weaker, more brittle, and the overall buoyancy of the frond increases. Measurement of drag force experienced by fronds from each ontogenetic stage allowed calculation of the environmental stress factor (ESF), which indicates the likelihood of detachment of a frond in the flow environment of its habitat. The ESF for fronds of each ontogenetic stage predicted that reproductively mature fronds (adult and old) break more readily than immature (juvenile) fronds. Increased proportions of reproductively mature fronds in floating rafts following storms compared with the proportion of mature fronds attached to the substratum support the ESF predictions. This combination of ontogenetic changes in material properties, buoyancy, and reproductive maturity in combination with the life history of T. ornata may contribute to the dispersal of this alga throughout French Polynesia.  相似文献   

20.
Various flotation studies were conducted on several strains of Scenedesmus. Inverted microscope flotation experiments run on culture 614 with bristles, culture 614 centrifuged to remove bristles, and bristle-less strain 76 revealed that bristles aid in flotation. Cultures grown in NH4NO3-Bristol's compared to cultures grown in Bristol's medium exhibited a positive buoyancy as do cells transferred, to fresh media. Differential centrifugation procedures demonstrate that colonies with bristles and spines exhibit a greater buoyancy than spineless and bristle less colonies, and furthermore that unicells and newly released colonies exhibit greater buoyancy than older cultures and large, granular, dividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号