首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The VASI gene encoding the valyl-tRNA synthetase from yeast was isolated and sequenced. The gene-derived amino acid sequence of yeast valyl-tRNA synthetase was found to be 23% homologous to the Escherichia coli isoleucyl-tRNA synthetase. This is the highest level of homology reported so far between two distinct aminoacyl-tRNA synthetases and is indicative of an evolutionary relationship between these two molecules. Within these homologous sequences, two functional regions could be recognized: the HIGH region which forms part of the binding site of ATP and the KMSKS region which is recognized as the consensus sequence for the binding of the 3'-end of tRNA (Hountondji, C., Dessen, Ph., and Blanquet, S. (1986) Biochemie (Paris) 68, 1071-1078). Secondary structure predictions as well as the presence of both HIGH and KMSKS regions, delineating the nucleotide-binding domain and the COOH-terminal helical domain in aminoacyl-tRNA synthetases of known three-dimensional structure, suggest that the yeast valyl-tRNA synthetase polypeptide chain can be folded into three domains: an NH2-terminal alpha-helical region followed by a nucleotide-binding topology and a COOH-terminal domain composed of alpha-helices which probably carries major sites in tRNA binding.  相似文献   

2.
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain.  相似文献   

3.
The emergence of polypeptide catalysts for amino acid activation, the slowest step in protein synthesis, poses a significant puzzle associated with the origin of biology. This problem is compounded as the 20 contemporary aminoacyl-tRNA synthetases belong to two quite distinct families. We describe here the use of protein design to show experimentally that a minimal class I aminoacyl-tRNA synthetase active site might have functioned in the distant past. We deleted the anticodon binding domain from tryptophanyl-tRNA synthetase and fused the discontinuous segments comprising its active site. The resulting 130 residue minimal catalytic domain activates tryptophan. This residual catalytic activity constitutes the first experimental evidence that the conserved class I signature sequences, HIGH and KMSKS, might have arisen in-frame, opposite motifs 2 and 1 from class II, as complementary sense and antisense strands of the same ancestral gene.  相似文献   

4.
Okon M  Frank PG  Marcel YL  Cushley RJ 《FEBS letters》2002,518(1-3):139-143
Class I aminoacyl-tRNA synthetases have been thought to be single polypeptide enzymes. However, the complete genome sequence of a hyper thermophile Aquifex aeolicus suggests that the gene for leucyl-tRNA synthetases (LeuRS) is probably split into two pieces (leuS and leuS'). In this research, each gene was separately cloned and overexpressed in Escherichia coli and the protein products were examined for LeuRS activity. Leucylation activity was detected only when both gene products coexisted. Gel filtration analysis showed that the active form of A. aeolicus LeuRS has a heterodimeric (alpha/beta type) quaternary structure that is unique among class I aminoacyl-tRNA synthetases.  相似文献   

5.
BACKGROUND: The formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates is carried out by cytidylyltransferases, which utilize CTP to form activated CDP-alcohols or CMP-acid sugars plus inorganic pyrophosphate. Several cytidylyltransferases are related and constitute a conserved family of enzymes. The eukaryotic members of the family are complex enzymes with multiple regulatory regions or repeated catalytic domains, whereas the bacterial enzyme, CTP:glycerol-3-phosphate cytidylyltransferase (GCT), contains only the catalytic domain. Thus, GCT provides an excellent model for the study of catalysis by the eukaryotic cytidylyltransferases. RESULTS: The crystal structure of GCT from Bacillus subtilis has been determined by multiwavelength anomalous diffraction using a mercury derivative and refined to 2.0 A resolution (R(factor) 0.196; R(free) 0.255). GCT is a homodimer; each monomer comprises an alpha/beta fold with a central 3-2-1-4-5 parallel beta sheet. Additional helices and loops extending from the alpha/beta core form a bowl that binds substrates. CTP, bound at each active site of the homodimer, interacts with the conserved (14)HXGH and (113)RTXGISTT motifs. The dimer interface incorporates part of a third motif, (63)RYVDEVI, and includes hydrophobic residues adjoining the HXGH sequence. CONCLUSIONS: Structure superpositions relate GCT to the catalytic domains from class I aminoacyl-tRNA synthetases, and thus expand the tRNA synthetase family of folds to include the catalytic domains of the family of cytidylyltransferases. GCT and aminoacyl-tRNA synthetases catalyze analogous reactions, bind nucleotides in similar U-shaped conformations, and depend on histidines from analogous HXGH motifs for activity. The structural and other similarities support proposals that GCT, like the synthetases, catalyzes nucleotidyl transfer by stabilizing a pentavalent transition state at the alpha-phosphate of CTP.  相似文献   

6.
Sequence comparisons have been combined with mutational and kinetic analyses to elucidate how the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase evolved. Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase involves two steps: activation of the tyrosine substrate by ATP to form an enzyme-bound tyrosyl-adenylate intermediate, and transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). Previous investigations indicate that the class I conserved KMSKS motif is involved in only the first step of the reaction (i.e. tyrosine activation). Here, we demonstrate that the class I conserved HIGH motif also is involved only in the tyrosine activation step. In contrast, one amino acid that is conserved in a subset of the class I aminoacyl-tRNA synthetases, Thr40, and two amino acids that are present only in tyrosyl-tRNA synthetases, Lys82 and Arg86, stabilize the transition states for both steps of the tRNA aminoacylation reaction. These results imply that stabilization of the transition state for the first step of the reaction by the class I aminoacyl-tRNA synthetases preceded stabilization of the transition state for the second step of the reaction. This is consistent with the hypothesis that the ability of aminoacyl-tRNA synthetases to catalyze the activation of amino acids with ATP preceded their ability to catalyze attachment of the amino acid to the 3' end of tRNA. We propose that the primordial aminoacyl-tRNA synthetases replaced a ribozyme whose function was to promote the reaction of amino acids and other small molecules with ATP.  相似文献   

7.
The crystal structure of glycerol-3-phosphate cytidylyltransferase from B. subtilis (TagD) is about to be solved. Here, we report a testable structure prediction based on the identification by sequence analysis of a superfamily of functionally diverse but structurally similar nucleotide-binding enzymes. We predict that TagD is a member of this family. The most conserved region in this superfamily resembles the ATP-binding HiGH motif of class I aminoacyI-tRNA synthetases. The predicted secondary structure of cytidylyltransferase and its homologues is compatible with the α/β topography of the class I aminoacyl-tRNA synthetases. The hypothesis of similarity of fold is strengthened by sequence-structure alignment and 3D model building using the known structure of tyrosyl tRNA synthetase as template. The proposed 3D model of TagD is plausible both structurally, with a well packed hydrophobic core, and functionally, as the most conserved residues cluster around the putative nucleotide binding site. If correct, the model would imply a very ancient evolutionary link between class I tRNA synthetases and the novel cytidylyltransferase superfamily. © 1995 Wiley-Liss, Inc.  相似文献   

8.
We have collected a set of 44 Arabidopsis proteins with similarity to the USPA (universal stress protein A of Escherichia coli) domain of bacteria. The USPA domain is found either in small proteins, or it makes up the N-terminal portion of a larger protein, usually a protein kinase. Phylogenetic tree analysis based upon a multiple sequence alignment of the USPA domains shows that these domains of protein kinases 1.3.1 and 1.3.2 form distinct groups, as do the protein kinases 1.4.1. This indicates that their USPA domain structures have diverged appreciably and suggests that they may subserve distinct cellular functions. Two USPA fold classes have been proposed: one based on Methanococcus jannaschii MJ0577 (1MJH) that binds ATP, and the other based on the Haemophilus influenzae universal stress protein (1JMV), highly similar to E. coli UspA, which does not bind ATP. A set of common residues involved in ATP binding in 1MJH and conserved in similar bacterial sequences is also found in a distinct cluster of Arabidopsis sequences. Threading analysis, which examines aspects of secondary and tertiary structure, confirms this Arabidopsis sequence cluster as highly similar to 1MJH. This structural approach can distinguish between the characteristic fold differences of 1MJH-like and 1JMV-like bacterial proteins and was used to assign the complete set of candidate Arabidopsis proteins to one of these fold classes. It is clear that all the plant sequences have arisen from a 1MJH-like ancestor.  相似文献   

9.
The available three-dimensional information for class II aminoacyl-tRNA synthetases has been used to generate sequence alignments that strictly adhere to the structural equivalencies between members of subclass IIa of these enzymes. The resulting alignments were used to study their phylogenetic relationships. In particular, the entire set of available sequences of prolyl-tRNA synthetases was analyzed in this way. In contrast to recent reports, we conclude that the evolutionary pattern of prolyl-tRNA synthetases does not obviously conform to the canonical phylogenetic distribution. The pattern found for these enzymes may be related to their biochemical characteristics. Our results indicate a potential relationship between the evolutionary pattern of prolyl-tRNA synthetases and the emergence of two enzymatically distinct forms of these proteins.  相似文献   

10.
The active form of the leucyl-tRNA synthetase from an extreme thermophile Aquifex aeolicus has a heterodimeric (alpha/beta type) quaternary structure that is unique among class I aminoacyl-tRNA synthetases. In an attempt to clarify the individual roles of each subunit in the function of leucyl-tRNA synthetase, several elementary activities were separately measured using each of the subunits alone or the reconstructed alpha/beta complex. It was found that the beta subunit alone is capable of recognizing its cognate tRNA, while the leucyl-adenylate formation and the overall leucyl-tRNA formation are detected only when both of the subunit proteins coexisted.  相似文献   

11.

Background

Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth.

Results

We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth’s geological history.  相似文献   

12.
The presence of two short signature sequence motifs (His-Ile-Gly-His (HIGH) and Lys-Met-Ser-Lys (KMSK)) is a characteristic of the class I aminoacyl-tRNA synthetases. These motifs constitute a portion of the catalytic site in three dimensions and play an important role in catalysis. In particular, the second lysine of the KMSK motif (K2) is the crucial catalytic residue for stabilization of the transition state of the amino acid activation reaction (aminoacyl-adenylate formation). Arginyl-tRNA synthetase (ArgRS) is unique among all of the class I enyzmes, as the majority of ArgRS species lack canonical KMSK sequences. Thus, the mechanism by which this group of ArgRSs achieves the catalytic reaction is not well understood. Using three-dimensional modeling in combination with sequence analysis and site-directed mutagenesis, we found a conserved lysine in the KMSK-lacking ArgRSs upstream of the HIGH sequence motif, which is likely to be a functional counterpart of the canonical class I K2 lysine. The results suggest a plausible partition of the ArgRSs into two major groups, on the basis of the conservation of the HIGH lysine.  相似文献   

13.
Crystallographic studies of a number of aminoacyl-tRNA synthetases and their complexes with ATP, amino acid and cognate tRNA are leading to an increasingly detailed picture of how these sophisticated enzymes function. Within the two distinct structural classes of ten synthetases, many common features are apparent, although evolution has led to many interesting idiosyncrasies in certain enzymes. Recent advances, specially concerning class II enzymes, have increased out knowledge of both the role of electrophiles in the mechanism of amino acid activation and cross-subunit tRNA recognition and help solve the evolutionary puzzles that have emerged from the extension of the aminoacyl-tRNA synthetase database to include Archae  相似文献   

14.
P Kast  C Wehrli  H Hennecke 《FEBS letters》1991,293(1-2):160-163
Phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 subunit structure) is a member of class II of tRNA synthetases. We report here the genetic analysis of an Escherichia coli mutant strain which is auxotrophic for phenylalanine because it has a PheRS with a decreased affinity for phenylalanine. The mutant pheS gene encoding the PheRS alpha subunit was cloned and sequenced, and the deviation from the wild-type gene was found to result in a Gly191-to-Asp191 exchange. This alteration is located within motif 2, one of 3 conserved sequence motifs characteristic for class II aminoacyl-tRNA synthetases. Motif 2 may thus participate in the formation of the phenylalanine binding site in PheRS.  相似文献   

15.
The structure of mitochondrial pyruvate dehydrogenase kinase isozyme 2 is of interest because it represents a family of serine-specific protein kinases that lack sequence similarity with all other eukaryotic protein kinases. Similarity exists instead with key motifs of prokaryotic histidine protein kinases and a family of eukaryotic ATPases. The 2.5-A crystal structure reported here reveals that pyruvate dehydrogenase kinase isozyme 2 has two domains of about the same size. The N-terminal half is dominated by a bundle of four amphipathic alpha-helices, whereas the C-terminal half is folded into an alpha/beta sandwich that contains the nucleotide-binding site. Analysis of the structure reveals this C-terminal domain to be very similar to the nucleotide-binding domain of bacterial histidine kinases, but the catalytic mechanism appears similar to that of the eukaryotic serine kinases and ATPases.  相似文献   

16.
Three aminoacyl-tRNA synthetases from yeast, one from plants and one from mammals possess unusual structures at their N termini, namely alpha helices with basic residues distributed asymmetrically, on a single face of the helix. It is unknown if these 'basic faced' alpha helices (BFAHs) are unique to the aminoacyl-tRNA synthetases. Analysis of the amino acid sequences of these five aminoacyl-tRNA synthetases using the hydrophobic moment algorithm failed to accurately identify the BFAHs. A new algorithm was therefore developed, called the 'basic moment'. This is a Fourier analysis procedure that predicts the distribution of basic residues within protein secondary structure. The basic moment identifies with a high degree of accuracy the five known BFAHs and also identifies further potential BFAHs at evolutionarily conserved positions in the peptide extensions of aspartyl-, lysyl- and valyl- tRNA synthetases from a range of eukaryotic species. In addition, the algorithm identifies the two-helix pair tRNA binding domain of alanyl-tRNA synthetase, implying that the domain includes a BFAH. The functional and evolutionary aspects of these structural features are discussed.  相似文献   

17.
18.
The availability of large numbers of genomic sequences has demonstrated the importance of lateral gene transfer (LGT) in prokaryotic evolution. However, considerable uncertainty remains concerning the frequency of LGT compared to other evolutionary processes. To examine LGTs in ancient lineages of prokaryotes a method was developed that utilizes the ratios of evolutionary distances (RED) to distinguish between alternative evolutionary histories. The advantages of this approach are that the variability inherent in comparing protein sequences is transparent, the direction of LGT and the relative rates of evolution are readily identified, and it is possible to detect other types of evolutionary events. This method was standardized using 35 genes encoding ribosomal proteins that were believed to share a vertical evolution. Using RED-T, an original computer program designed to implement the RED method, the evolution of the genes encoding the 20 aminoacyl-tRNA synthetases was examined. Although LGTs were common in the evolution of the aminoacyl-tRNA synthetases, they were not sufficient to obscure the organismal phylogeny. Moreover, much of the apparent complexity of the gene tree was consistent with the formation of the paralogs in the ancestors to the modern lineages followed by more recent loss of one paralog or the other.  相似文献   

19.
The seven class 2 aminoacyl-tRNA synthetases that are α2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.  相似文献   

20.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号