首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them.  相似文献   

3.
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.  相似文献   

4.
5.
6.
Organization of the Drosophila circadian control circuit   总被引:1,自引:0,他引:1  
  相似文献   

7.
Mazzoni EO  Desplan C  Blau J 《Neuron》2005,45(2):293-300
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The Drosophila larval visual system, Bolwig's organ (BO), projects to larval pacemaker neurons to entrain their clock. BO also mediates larval photophobic behavior. We found that ablation or electrical silencing of larval pacemaker neurons abolished light avoidance. Thus, circadian pacemaker neurons receive input from BO not only to reset the clock but also to transmit rapid photophobic signals. Furthermore, as clock gene mutations also affect photophobicity, the pacemaker neurons modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity.  相似文献   

8.
Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF   总被引:4,自引:0,他引:4  
Hyun S  Lee Y  Hong ST  Bang S  Paik D  Kang J  Shin J  Lee J  Jeon K  Hwang S  Bae E  Kim J 《Neuron》2005,48(2):267-278
  相似文献   

9.
10.
Suh J  Jackson FR 《Neuron》2007,55(3):435-447
Previous studies suggest that glia may be required for normal circadian behavior, but glial factors required for rhythmicity have not been identified in any system. We show here that a circadian rhythm in Drosophila Ebony (N-beta-alanyl-biogenic amine synthetase) abundance can be visualized in adult glia and that glial expression of Ebony rescues the altered circadian behavior of ebony mutants. We demonstrate that molecular oscillator function and clock neuron output are normal in ebony mutants, verifying a role for Ebony downstream of the clock. Surprisingly, the ebony oscillation persists in flies lacking PDF neuropeptide, indicating it is regulated by an autonomous glial oscillator or another neuronal factor. The proximity of Ebony-containing glia to aminergic neurons and genetic interaction results suggest a function in dopaminergic signaling. We thus suggest a model for ebony function wherein Ebony glia participate in the clock control of dopaminergic function and the orchestration of circadian activity rhythms.  相似文献   

11.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recently beginning to be elucidated. As in flies and other insect species, pigment-dispersing hormone (PDH)-immunoreac- tive neurons of the accessory medulla of the cockroach are crucial elements of the circadian system. Lesions and transplantation experiments showed that the endogeneous circadian clock of the brain resides in neurons associated with the accessory medulla. The accessory medulla is organized into a nodular core receiving photic input, and into internodular and peripheral neuropil involved in efferent output and coupling input. Photic entrainment of the clock through compound eye photoreceptors appears to occur via parallel, indirect pathways through the medulla. Light-like phase shifts in circadian locomotor activity after injections of γ-aminobutyric acid (GABA)- or Mas-allatotropin into the vicinity of the accessory medulla suggest that both substances are involved in photic entrainment. Extraocular, cryptochrome-based photoreceptors appear to be present in the optic lobe, but their role in photic entrainment has not been examined. Pigment-dispersing hormone-immunoreactive neurons provide efferent output from the accessory medulla to several brain areas and to the peripheral visual system. Pigment-dispersing hormone-immunoreactive neurons, and additional heterolateral neurons are, furthermore, involved in bilateral coupling of the two pacemakers. The neuronal organization, as well as the prominent involvement of GABA and neuropeptides, shows striking similarities to the organization of the suprachiasmatic nucleus, the circadian clock of the mammalian brain.  相似文献   

12.
Circadian rhythms are ubiquitous in living organisms, synchronizing life functions at the biochemical, physiological, and behavioral levels. The rhythm-generating mechanisms, collectively known as circadian clocks, are not fully understood in any organism. Research in the fruit fly Drosophila has led to the identification of several clock genes that are involved in the function of the brain-centered clock, which controls behavioral rhythms of adult flies. With the use of clock genes as markers, putative circadian clocks were mapped in the fly peripheral organs and shown to be independent from clocks located in the brain. A homologue of fruit fly period gene has been identified in moths and other insects, allowing investigations of this gene's role in known insect rhythms. This approach may increase our understanding of how circadian clocks are organized into the circadian system that orchestrates temporal integration of life processess in insects.  相似文献   

13.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

14.
Collins B  Kane EA  Reeves DC  Akabas MH  Blau J 《Neuron》2012,74(4):706-718
Circadian rhythms offer an excellent opportunity to dissect the neural circuits underlying innate behavior because the genes and neurons involved are relatively well understood. We first sought to understand how Drosophila clock neurons interact in the simple circuit that generates circadian rhythms in larval light avoidance. We used genetics to manipulate two groups of clock neurons, increasing or reducing excitability, stopping their molecular clocks, and blocking neurotransmitter release and reception. Our results revealed that lateral neurons (LN(v)s) promote and dorsal clock neurons (DN(1)s) inhibit light avoidance, these neurons probably signal at different times of day, and both signals are required for rhythmic behavior. We found that similar principles apply in the more complex adult circadian circuit that generates locomotor rhythms. Thus, the changing balance in activity between clock neurons with opposing behavioral effects generates robust circadian behavior and probably helps organisms transition between discrete behavioral states, such as sleep and wakefulness.  相似文献   

15.
16.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

17.
Nagoshi E  Saini C  Bauer C  Laroche T  Naef F  Schibler U 《Cell》2004,119(5):693-705
The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain and subsidiary oscillators in most peripheral cell types. While oscillators in SCN neurons are known to function in a self-sustained fashion, peripheral oscillators have been thought to damp rapidly when disconnected from the control exerted by the SCN. Using two reporter systems, we monitored circadian gene expression in NIH3T3 mouse fibroblasts in real time and in individual cells. In conjunction with mathematical modeling and cell co-culture experiments, these data demonstrated that in vitro cultured fibroblasts harbor self-sustained and cell-autonomous circadian clocks similar to those operative in SCN neurons. Circadian gene expression in fibroblasts continues during cell division, and our experiments unveiled unexpected interactions between the circadian clock and the cell division clock. Specifically, the circadian oscillator gates cytokinesis to defined time windows, and mitosis elicits phase shifts in circadian cycles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号