首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Transfer of plasmid RP4 between introduced strains of Pseudomonas fluorescens was studied in 2 soils, Ede loamy sand and Guelph loam, in non-rhizosphere and rhizosphere soil using soil chambers and microcosm systems. Short-term organism survival was generally at high levels (> 106/g dry soil), in both soils, whereas long-term survival was poorer, particularly in the loamy sand. Amendment of this soil with bentonite clay improved bacterial survival. Plasmid transfer between donor and recipient strains freshly introduced into separate portions of Ede loamy sand, which were subsequently mixed, was only detected in the vicinity of growing wheat roots, suggesting roots stimulate bacterial migration and/or growth. However, no transfer was detected between resident donor and recipient cell populations (introduced 48 days previously), due to poor organism survival. Plasmid transfer was detected in the rhizosphere between established, resident donor cell populations, and newly-introduced recipients, and vice-versa, in both soils. These data suggested that plant roots enhance the frequency of bacterial matings not only between organisms present in the same niches, but also between organisms from different niches, or in different conditions of stress, probably by stimulating bacterial migration and/or growth, or by providing additional surfaces for cell-to-cell contact.  相似文献   

2.
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.  相似文献   

3.
Abstract In strains of nitrogen-fixing Enterobacter agglomerans , isolated from the rhizosphere of cereals, the nif genes are located on large plasmids. Plasmid pEA9 (200 kb) is self-transmissible between closely related strains. To collect data on possible uncontrolled gene spread, for planned releases of such bacteria, plasmid pEA9 was labelled with transposons (Tn 1725 and Tn 5 ) and used in mating experiments between homologous Enterobacter strains with soil as substrate. The soil was from a plot into which an actual release was being planned. In the majority of experiments it was not sterilized.
Survival and plasmid transfer is described, as are variations in temperature, time, moisture, pH and soil packing. Further experiments were with or without added energy sources, and with or without plant roots. Under standard conditions (22°C, pH 5.2, 15.5% moisture, loose soil, 2 × 107 inoculated donor and recipient cells each per g soil, 3 days incubation) sterilized soil gave low rates of plasmid transfer (10−6 per donor) but non-sterilized soil gave none. Adding Luria broth or sucrose to non-sterilized soil elicited strong cell propagation, together with plasmid transfer (optimum after incubation for 1 day: 10−4 exconjugants per donor). No transfer could be registered in the presence of wheat seedling roots for periods up to 5 weeks.  相似文献   

4.
Transfer of the Pea Symbiotic Plasmid pJB5JI in Nonsterile Soil   总被引:7,自引:5,他引:2       下载免费PDF全文
Transfer of the pea (Pisum sativum L.) symbiotic plasmid pJB5JI between strains of rhizobia was examined in sterile and nonsterile silt loam soil. Sinorhizobium fredii USDA 201 and HH003 were used as plasmid donors, and symbiotic plasmid-cured Rhizobium leguminosarum 6015 was used as the recipient. The plasmid was carried but not expressed in S. fredii strains, whereas transfer of the plasmid to R. leguminosarum 6015 rendered the recipient capable of nodulating pea plants. Confirmation of plasmid transfer was obtained by acquisition of plasmid-encoded antibiotic resistance genes, nodulation of pea plants, and plasmid profiles. Plasmid transfer in nonsterile soil occurred at frequencies of up to 10−4 per recipient and appeared to be highest at soil temperatures and soil moisture levels optimal for rhizobial growth. Conjugation frequencies were usually higher in sterile soil than in nonsterile soil. In nonsterile soil, transconjugants were recovered only with strain USDA 201 as the plasmid donor. Increasing the inoculum levels of donor and recipient strains up to 109 cells g of soil−1 increased the number of transconjugants; peak plasmid transfer frequencies, however, were found at the lower inoculum level of 107 cells g of soil−1. Plasmid transfer frequencies were raised in the presence of the pea rhizosphere or by additions of plant material. Transconjugants formed by the USDA 201(pJB5JI) × 6015 mating in soil formed effective nodules on peas.  相似文献   

5.
Transfer of plasmid RP4 to indigenous bacteria in bulk soil could only be detected in soil with nutrient amendment. Lack of physiological active donor and recipient cells was apparently one of the limiting factors in un-amended bulk soil. Plasmid transfer was detected both in the spermosphere and rhizosphere of barley seedlings. Transfer occured from seed coated donor bacteria (i) to introduced recipient bacteria and (ii) to indigenous bacteria present in soil. Plasmid transfer was also detected from donor bacteria introduced to the soil to seed coated recipient bacteria. Transfer efficiencies in the rhizosphere were significantly below the transfer efficiencies obtained in the spermosphere. The transfer efficiencies detected in the barley spermosphere were among the highest reported from any natural environment.  相似文献   

6.
Abstract Transfer of plasmid RP4p from introduced Pseudomonas fluorescens to a co-introduced recipient strain or to members of the indigenous bacterial population was studied in four different soils of varying texture planted with wheat. Donor and recipient strains showed good survival in the four soils throughout the experiment. The numbers of transconjugants found in donor and recipient experiments in two soils, Ede loamy sand and Löss silt loam were significantly higher in the rhizosphere than in corresponding bulk soil. In the remaining two soils, Montrond and Flevo silt loam, transconjugant numbers were not significantly higher in the rhizosphere than in the bulk soil.
The combined utilization of a specific bacteriophage eliminate the donor strain and the pat sequence as a specific marker to detect RP4p was found to be very efficient in detecting indigenous transconjugants under various environmental conditions. The numbers of indigenous transconjugants were consistently higher in rhizosphere than bull soil. A significant rhizosphere effect on transconjugant numbers of transconjugants were recovered from Flevo and Montrond silt loam; these soils possess characteristics such as clay or organic matter contents which may be favorable to conjugation.  相似文献   

7.
A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. Plasmid transfer rates were derived for a mass action model, and donor and recipient survival were modeled as exponential growth and decay processes or both. Rate parameters were derived from laboratory studies in which donor and recipient strains were incubated in test tubes with a peat-vermiculite solution or on excised radish or bean leaves in petri dishes. The model predicted donor, recipient, and transconjugant populations in hourly time steps. It was tested in a microcosm planted with radish seeds and inoculated with donor and recipient strains and on leaf surfaces of radish and bean plants also growing in microcosms. Bacteria were periodically enumerated on selective media over 7 to 14 days. When donor and recipient populations were 10(6) to 10(8) CFU/g (wet weight) of plant or soil, transconjugant populations of about 10(1) to 10(4) were observed after 1 day. An initial rapid increase and a subsequent decline in numbers of transconjugants in the rhizosphere and on leaf surfaces were correctly predicted.  相似文献   

8.
A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. Plasmid transfer rates were derived for a mass action model, and donor and recipient survival were modeled as exponential growth and decay processes or both. Rate parameters were derived from laboratory studies in which donor and recipient strains were incubated in test tubes with a peat-vermiculite solution or on excised radish or bean leaves in petri dishes. The model predicted donor, recipient, and transconjugant populations in hourly time steps. It was tested in a microcosm planted with radish seeds and inoculated with donor and recipient strains and on leaf surfaces of radish and bean plants also growing in microcosms. Bacteria were periodically enumerated on selective media over 7 to 14 days. When donor and recipient populations were 10(6) to 10(8) CFU/g (wet weight) of plant or soil, transconjugant populations of about 10(1) to 10(4) were observed after 1 day. An initial rapid increase and a subsequent decline in numbers of transconjugants in the rhizosphere and on leaf surfaces were correctly predicted.  相似文献   

9.
The transfer of a genetically marked derivative of plasmid RP4, RP4p, from Pseudomonas fluorescens to members of the indigenous microflora of the wheat rhizosphere was studied by using a bacteriophage that specifically lyses the donor strain and a specific eukaryotic marker on the plasmid. Transfer of RP4p to the wheat rhizosphere microflora was observed, and the number of transconjugants detected was approximately 10 transconjugants per g of soil when 10 donor cells per g of soil were added; transfer in the corresponding bulk soil was slightly above the limit of detection. All of the indigenous transconjugants which we analyzed contained a 60-kb plasmid and were able to transfer this plasmid to a Nx RpP. fluorescens recipient strain. The indigenous transconjugants were identified as belonging to Pseudomonas spp., Enterobacter spp., Comamonas spp., and Alcaligenes spp.  相似文献   

10.
Abstract: The aim of this work was to determine the efficiency of the conjugative plasmid pTS130 to transfer in various environmental conditions between two strains of Streptomyces lividans . This plasmid is a derivative of the conjugative and integrative plasmid pSAM2 isolated originally from Streptomyces ambofaciens and capable of transfer to a large range of bacteria. Our results demonstrate the high frequency of the conjugation mechanism since more than 60% of the recipient cells developed on agar slants harbored the plasmid pTS130 (as evidenced by Southern hybridization with a pSAM2 derivative plasmid probe). When donor and recipient strains were inoculated into sterile and non-sterile soil microcosms, transconjugants were detected after two days of incubation in both cases. However, the number of donor, recipient and transconjugant cells were established at a lower level in the non-sterile soil than in the sterile soil experiments. Moreover, nutrient amendment of the sterile soil was found to increase the population levels of parental strains and transfer frequencies both significantly and simultaneously. On the other hand, modifying water potential of the soil microcosms did not result in affecting the establishment of the Streptomyces lividans cells or the transfer rate.  相似文献   

11.
Plasmid RP4 transfer between introduced pseudomonads was studied in non-rhizosphere and rhizosphere soil. The addition of nutrients to the non-rhizosphere soil stimulated plasmid transfers between introduced donor and recipient cells, and no transfer was detected in nonamended soil. Transfer was also detected in soil in a model rhizosphere, but not in corresponding non-rhizosphere soil. Colony hybridization with whole plasmid RP4 DNA as a probe was employed to detect transfers to indigenous organisms in soil. Although transfers to introduced recipient cells were easily detected in parallel controls, no indigenous organisms were identified that had received RP4. Background levels of soil organisms with the RP4 resistance pattern were considerable, and about 10% of these populations contained DNA sequences with homology to RP4. However, no plasmids could be detected in any of 20 isolates, nor was resistance transfer to aPseudomonas fluorescens recipient detected in filter matings.  相似文献   

12.
IncP plasmid r68.45, which carries several antibiotic resistance genes, and IncP plasmid pJP4, which contains genes for mercury resistance and 2,4-dichlorophenoxyacetic acid degradation, were evaluated for their ability to transfer to soil populations of rhizobia. Transfer of r68.45 was detected in nonsterile soil by using Bradyrhizobium japonicum USDA 123 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid transfer frequencies ranged up to 9.1 × 10-5 in soil amended with 0.1% soybean meal and were highest after 7 days with strain 3G4b4-RS as the recipient. Transconjugants were detected in 7 of 500 soybean nodules tested, but the absence of both parental strains in these nodules suggests that plasmid transfer had occurred in the soil, in the rhizosphere, or on the root surface. Transfer of degradative plasmid pJP4 was also evaluated in nonsterile soil by using B. japonicum USDA 438 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid pJP4 was transferred only when strains USDA 110-ARS and 3G4b4-RS were the recipients. The plasmid transfer frequency was highest for strain 3G4b4-RS (up to 7.4 × 10-6). Mercury additions to soil, ranging from 10 to 50 μg/g of soil, did not affect population levels of parental strains or the plasmid transfer frequency.  相似文献   

13.
Continuous-flow column reactors were used to study the dynamics of plasmid exchange in a structured, thermodynamically open system containing either Enterobacter cloacae or Pseudomonas cepacia , both carrying the transmissible recombinant plasmid R388::Tn1721. Plasmid transfer rates were higher in vermiculite and sterile soil columns supplied with nutrient solution than those in sterile and non-sterile soil columns without input of nutrient solution. For both species, donor and recipient strains took about 5 days to reach their maximum densities in effluents from the columns supplied with nutrient solution. After about 8 day s the donor and transconjugant populations of P. cepacia in the effluent solution decreased exponentially, whereas E. cloacae donor, recipient and transconjugant strains maintained steady-state concentrations. The difference between plasmid stability in the two species may have significant consequences in terms of releasing plasmid-bearing genetically modified microorganisms into the natural environment. The plasmid is persistent in E. cloacae in non-sterile soil even though its transfer to the marked recipient in non-sterile soil was minimal.  相似文献   

14.
Abstract: Escherichia coli recipient and E. coli donor strains carrying streptothricin-resistance genes were inoculated together into different soil microcosms. These genes were localized on the narrow host range plasmids of incompatibility (Inc) groups FII, Il, and on the broad host range plasmids of IncP1, IncN, IncW3, and IncQ. The experiments were intended to study the transfer of these plasmids in sterile and non-sterile soil with and without antibiotic selective pressure and in planted soil microcosms. Transfer of all broad host range plasmids from the introduced E. coli donor into the recipient was observed in all microcosm experiments. These results indicate that broad host range plasmids encoding short and rigid pili might spread in soil environments by conjugative transfer. In contrast, transfer of the narrow host range plasmids of IncFII and IncI1, into E. coli recipients was not found in sterile or non-sterile soil. These plasmids encoded flexible pili or flexible and rigid pili, respectively. In all experiments highest numbers of transconjugants were detected for the IncP1-plasmid (pTH16). There was evidence with plasmids belonging to IncP group transferred by conjugation into a variety of indigenous soil bacteria at detectable frequencies. Significantly higher numbers of indigenous transconjugants were obtained for the IncP-plasmid under antibiotic selection pressure, and a greater diversity of transconjugants was detected. Availability of nutrients and rhizosphere exudates stimulated transfer in soil. Furthermore, transfer of the IncN-plasmid (pIE1037) into indigenous bacteria of the rhizosphere community could be detected. The transconjugants were determined by BIOLOG as Serratia liquefaciens . Despite the known broad host range of IncW3 and IncQ-plasmids, transfer into indigenous soil bacteria could not be detected.  相似文献   

15.
The transfer of a genetically marked derivative of plasmid RP4, RP4p, from Pseudomonas fluorescens to members of the indigenous microflora of the wheat rhizosphere was studied by using a bacteriophage that specifically lyses the donor strain and a specific eukaryotic marker on the plasmid. Transfer of RP4p to the wheat rhizosphere microflora was observed, and the number of transconjugants detected was approximately 103 transconjugants per g of soil when 107 donor cells per g of soil were added; transfer in the corresponding bulk soil was slightly above the limit of detection. All of the indigenous transconjugants which we analyzed contained a 60-kb plasmid and were able to transfer this plasmid to a Nxr RprP. fluorescens recipient strain. The indigenous transconjugants were identified as belonging to Pseudomonas spp., Enterobacter spp., Comamonas spp., and Alcaligenes spp.  相似文献   

16.
Recent concern over the release of genetically engineered organisms has resulted in a need for information about the potential for gene transfer in the environment. In this study, the conjugal transfer in Pseudomonas aeruginosa of the plasmids R68.45 and FP5 was demonstrated in the freshwater environment of Fort Loudoun Resevoir, Knoxville, Tenn. When genetically well defined plasmid donor and recipient strains were introduced into test chambers suspended in Fort Loudoun Lake, transfer of both plasmids was observed. Conjugation occurred in both the presence and absence of the natural microbial community. The number of transconjugants recovered was lower when the natural community was present. Transfer of the broad-host-range plasmid R68.45 to organisms other than the introduced recipient was not observed in these chambers but was observed in laboratory simulations when an organism isolated from lakewater was used as the recipient strain. Although the plasmids transferred in laboratory studies were genetically and physically stable, a significant number of transconjugants recovered from the field trials contained deletions and other genetic rearrangements, suggesting that factors which increase gene instability are operating in the environment. The potential for conjugal transfer of genetic material must be considered in evaluating the release of any genetically engineered microorganism into a freshwater environment.  相似文献   

17.
Recent concern over the release of genetically engineered organisms has resulted in a need for information about the potential for gene transfer in the environment. In this study, the conjugal transfer in Pseudomonas aeruginosa of the plasmids R68.45 and FP5 was demonstrated in the freshwater environment of Fort Loudoun Resevoir, Knoxville, Tenn. When genetically well defined plasmid donor and recipient strains were introduced into test chambers suspended in Fort Loudoun Lake, transfer of both plasmids was observed. Conjugation occurred in both the presence and absence of the natural microbial community. The number of transconjugants recovered was lower when the natural community was present. Transfer of the broad-host-range plasmid R68.45 to organisms other than the introduced recipient was not observed in these chambers but was observed in laboratory simulations when an organism isolated from lakewater was used as the recipient strain. Although the plasmids transferred in laboratory studies were genetically and physically stable, a significant number of transconjugants recovered from the field trials contained deletions and other genetic rearrangements, suggesting that factors which increase gene instability are operating in the environment. The potential for conjugal transfer of genetic material must be considered in evaluating the release of any genetically engineered microorganism into a freshwater environment.  相似文献   

18.
To identify the main drivers of plasmid transfer in the rhizosphere, conjugal transfer was studied in the rhizospheres of pea and barley. The donor Pseudomonas putida KT2442, containing plasmid pKJK5::gfp, was coated onto the seeds, while the recipient P. putida LM24, having a chromosomal insertion of dsRed, was inoculated into the growth medium. Mean transconjugant-to-donor ratios in vermiculite were 4.0+/-0.8 x 10(-2) in the pea and 5.9+/-1.4 x 10(-3) in the barley rhizospheres. In soil, transfer ratios were about 10 times lower. As a result of a 2-times higher root exudation rate in pea, donor densities in pea (1 x 10(6)-2 x 10(9) CFU g(-1) root) were about 10 times higher than in barley. No difference in recipient densities was observed. In situ visualization of single cells on the rhizoplane and macroscopic visualization of the colonization pattern showed that donors and transconjugants were ubiquitously distributed in the pea rhizosphere, while they were only located on the upper parts of the barley roots. Because the barley root elongated about 10 times faster than the pea root, donors were probably outgrown by the elongating barley root. Thus by affecting the cell density and distribution, exudation and root growth appear to be key parameters controlling plasmid transfer in the rhizosphere.  相似文献   

19.
The fates of Pseudomonas fluorescens R2fR and its mutant derivative RIWE8, which contains a lacZ reporter gene responsive to wheat root exudate, were compared in a field microplot. Inoculant survival, root colonization, translocation, resistance to stress factors, and reporter gene activity were assessed in bulk and wheat rhizosphere soils. Populations of both strains declined gradually in bulk and wheat rhizosphere soils and on the wheat rhizoplane as determined by specific CFU and immunofluorescence (IF). In samples from both bulk soil and wheat rhizosphere, IF cell counts were up to 3 orders of magnitude greater than the corresponding numbers of CFU after 120 days, indicating the presence of nonculturable inoculant cells. Estimates of RIWE8-specific target DNA molecule numbers in bulk soil samples 3 and 120 days after inoculation by most-probable-number PCR coincided with the corresponding CFU values. Transport of both strains to deeper soil layers was observed by 3 days after introduction into the microplot. Both strains colonized wheat roots similarly, and cells were seen scattered on the surface of 1-month-old wheat seedling roots by immunogold labelling-scanning electron microscopy. On average, reporter gene activity was significantly higher in wheat rhizosphere soil containing RIWE8 cells than in bulk soil or in soils containing R2fR cells. For both strains, resistance to the four stress factors ethanol, high temperature, high osmotic tension, and oxidative stress increased progressively with residence in soil. Cells from the rhizosphere of 11-day-old seedlings showed similar levels of resistance to osmotic and oxidative stresses and enhanced resistance to ethanol and heat as compared to cells from bulk soil. By 37 days, populations of R2fR and RIWE8 in the rhizosphere were significantly more sensitive to osmotic stress than were populations in bulk soil, whereas differences in response to the other stress factors were less evident. Hence, except for the induction of reporter gene expression in strain RIWE8 in the wheat rhizosphere, the data indicated that there were no great differences in the ecological properties in soil between the lacZ-modified and parental strains.  相似文献   

20.
We report a field study on plasmid mobilization in an agricultural soil. The influence of pig manure on the mobilization of the IncQ plasmid pIE723 by indigenous plasmids or by the IncP(alpha) plasmid pGP527 into the recipient Pseudomonas putida UWC1 (Rif(supr) Nal(supr)) was studied in field soil. Six plots were prepared in duplicate, three of which were treated with manure prior to inoculation of the donor and recipient strains. As a donor strain, either Escherichia coli J53(pIE723) or E. coli 600(pIE723, pGP527) was used. Putative transconjugants obtained on a selective medium were confirmed by DNA hybridization and PCR. Plasmid mobilization by indigenous mobilizing plasmids was observed on two occasions in manured soil. Manuring of soil significantly enhanced the frequency of pIE723 mobilization by pGP527, since mobilization frequencies into P. putida UWC1 were at least 10-fold higher in manured soil than in nonmanured soil. Enhanced numbers of P. putida UWC1 transconjugant and recipient colonies could be observed in manured soil throughout the 79-day field test. Transfer of pIE723 or pG527 into indigenous soil or rhizosphere bacteria could not be detected when indigenous bacteria isolated by selective cultivation were screened for the presence of these plasmids by DNA hybridization. Furthermore, the presence of IncN-, IncP-, or IncQ-specific sequences was confirmed in total community DNA extracted directly from the manured or nonmanured soil by PCR. IncW plasmids were detectable only in manured soil, indicating entry of these plasmids into soil via manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号