首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou W  Ge X  Zhu D  Langdon A  Deng L  Hua Y  Zhao J 《Bioresource technology》2011,102(3):3629-3631
The FTIR spectra, SEM-EDXA and copper adsorption capacities of the raw plant materials, alkali-treated straws and cellulose xanthogenate derivatives of Eichhornia crassipes shoot, rape straw and corn stalk were investigated. FTIR spectra indicated that of the three plant materials, the aquatic biomass of E. crassipes shoot contained more OH and CO groups which accounted for the higher Cu(2+) adsorption capacities of the raw and alkali treated plant material. SEM-EDXA indicated the incorporation of sulphur and magnesium in the cellulose xanthogenate. The Cu(2+) adsorption capacities of the xanthogenates increased with their magnesium and sulphur contents. However more copper was adsorbed than that can be explained by exchange of copper with magnesium. Precipitation may contribute to the enhanced uptake of copper by the cellulose xanthogenate.  相似文献   

2.
黏土矿物中重金属离子的吸附规律及竞争吸附   总被引:12,自引:0,他引:12  
采用等温吸附法,研究了重金属铜、铅、镉、镍在膨润土中的吸附特征,发现膨润土对铜、铅的吸附明显强于镉、镍,吸附强度大小顺序为Pb2 >Cu2 >Ni2 >Cd2 。Langmuir和Freundlich方程对这4种金属离子等温吸附的拟合均呈极显著关系。Pb2 、Cd2 、Ni2 分别与Cu2 的双组分竞争吸附表明,黏土矿物对4种离子具有"选择性吸附"。在Pb2 、Ni2 、Cd2 的存在条件下,黏土矿物对Cu2 的吸附产生不同程度的下降;100mg/LCu2 对Pb2 的影响不大,但可完全抑制Ni2 、Cd2 的吸附。建立了IAS和LCA模型来预测Pb2 与Cu2 的双组分竞争吸附,并对LCA模型进行修正,提出了更符合实际情况的竞争吸附模型。文章最后用LCA修正模型对Pb2 与Cu2 的双组分竞争吸附进行了模拟。  相似文献   

3.
Biosorption of Cu(II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a fed-batch operated completely mixed reactor. Fed-batch adsorption experiments were performed by varying the feed flow rate ( 0.075-0.325 l h(-1)), feed copper (II) ion concentrations (50-300 mg l(-1)) and the amount of adsorbent (1-6 g PWS) using fed-batch operation. Breakthrough curves describing the variations of effluent copper ion concentrations with time were determined for different operating conditions. Percent copper ion removals from the aqueous phase decreased, but the biosorbed (solid phase) copper ion concentrations increased with increasing the feed flow rate and Cu(II) concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS and the rate constant for Cu(II) ion biosorption. Adsorption rate constant in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations while the biosorption capacity of PWS was comparable with powdered activated (PAC) in column operations. Therefore, a completely mixed reactor operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.  相似文献   

4.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

5.
Cornops aquaticum is a widely distributed semiaquatic grasshopper in the Neotropics. The development, feeding and oviposition of C. aquaticum take place on Pontederiaceae, especially on species of Eichhornia. Several aspects of the feeding of C. aquaticum are studied because is one of the most important herbivores of the highly invasive floating Eichhornia crassipes in native areas. The aims of this paper were: (1) to quantify the amount of E. crassipes consumed by C. aquaticum, (2) to determine the growth rate and the conversion efficiency of food ingested by this grasshopper, and (3) to determine the possible effect of consumption on E. crassipes productivity. Thirty individuals from each specific age class were used in the experiment: nymphs A, nymphs B, adult males and adult females. Insects were individually confined in plastic pots with a leaf of E. crassipes. We estimated feeding by individual, consumption index (CI), relative growth rate (GR) and efficiency of conversion of ingested food to body substance (ECI). The impact of C. aquaticum consumption on E. crassipes floating meadows was assessed with the abundance of the grasshopper, and the available data on primary production of the host plant at the study site. Food intake of C. aquaticum was 11.23% of plant productivity. Food consumption, growth rate and food conversion efficiency of this grasshopper varied according to the specific age classes. Damage caused by C. aquaticum is high in comparison with the damage caused by other semiaquatic and grassland grasshoppers, however it is not enough to prevent the growth and coverage of native E. crassipes floating meadows because abundance of grasshoppers are realtively low and the growth rate and productivity of the host plant is high.  相似文献   

6.
凤眼莲能够吸收和在体内聚集外源苯酚,体内的酸含量随着环境中酚浓度的上升而上升。从生长于合酚培养液中的凤眼莲体内能够检测到酚糖苷,说明凤眼莲体内有酚精苷转移酶的存在。浓度小于50mg/L的外源酚能提高凤眼莲体内的多酚氧化酶和过氧化物酶的活性。多酚氯化酶与过氧化物酶在线粒体和微粒体中均有不同程度的分布,而酚糖苷转移酶则不存在于这些细胞器中。  相似文献   

7.
两种水生植物对抗生素污染水体的修复作用   总被引:4,自引:0,他引:4  
采用水培方法,通过检测水样中氨苄青霉素(Ampicillin)、盐酸四环素(Tetracycline)、盐酸土霉素(Oxytetracycline)和盐酸金霉素(Chlortetracycline)含量的动态变化,确定水生植物大漂(Pistia stratiotes)和凤眼莲(Eichhornia crassipes)对水体中抗生素的清除作用。结果显示:①在系列高浓度(10~50 μg/mL)抗生素的条件下,凤眼莲去除水中盐酸金霉素与盐酸土霉素的效果优于大漂;②对于采集的污水(抗生素浓度<2.5 μg/mL),培养72 h后,大漂和凤眼莲对盐酸四环素的去除率分别达80%和90%以上,对氨苄青霉素的去除率分别达80%和70%以上。大漂和凤眼莲对4种抗生素污染的水体均表现出不同程度的修复功能,特别是凤眼莲效果更佳,可作为去除水体抗生素污染的首选材料。  相似文献   

8.
Adsorption on crystalline cellulose of six endoglucanases (Endo I, II, III, IV, V and VI; 1, 4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) and two exoglucanases (Exo II and III; 1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.92), purified from a commercial cellulase preparation of Trichoderma viride origin, was studied. Endo I, III, and V adsorbed strongly on Avicel cellulose, while adsorption of Endo II, IV, and VI was much lower. Also, the two exoglucanases could be divided into one enzyme (Exo III) that had a high adsorption affinity and another enzyme (Exo II) that adsorbed only moderately. Adsorption data fitted the Langmuir-type adsorption isotherm. However, adsorption was only partially reversible with respect to dilution. No relation could be found between adsorption affinity and degree of randomness in cellulose hydrolysis, measured as the diversity of released hydrolytic products. Kinetic measurements indicated that only part of the adsorbed enzyme molecules are hydrolytically active.  相似文献   

9.
In this work, the adsorption of acetylene and its binary mixture with methane on MOF-5, HKUST-1 and MOF-505 was studied using Grand Canonical Monte Carlo molecular simulations. The preferred adsorption sites of acetylene and methane molecules into metal–organic frameworks (MOFs) were investigated. The simulated adsorption isotherms of acetylene on MOF-5 and MOF-505 agreed well with the experimental ones without any reparameterisation of the potential parameters but for HKUST-1 the interaction parameters of the acetylene and copper ion were reparameterised. Comparisons of the calculated adsorption isotherms of acetylene in the studied MOFs showed that the MOF-5 had the lowest adsorption capacity. Our results revealed that guest molecules were most adsorbed on the entrance windows of the octagon pore of HKUST-1, while the preferred adsorption sites were large pores and on the metal ion cluster of MOF-505 and MOF-5, respectively. Adsorption of binary mixtures of methane and acetylene on MOF-5, HKUST-1 and MOF-505 revealed that acetylene adsorption is higher than that of methane. Finally, the results showed that C2H2/CH4 selectivity values on HKUST-1 are significantly higher than on MOF-505 and MOF-5. The preferred adsorption sites of acetylene and methane in an equimolar binary mixture were calculated and discussed.  相似文献   

10.
In the cellulase-cellulose reaction system, the adsorption of cellulase on the solid cellulose substrate was found to be one of the important parameters that govern the enzymatic hydrolysis rate of cellulose. The adsorption of cellulase usually parallels the rate of hydrolysis of cellulose. The affinity for cellulase varies depending on the structural properties of cellulose. Adsorption parameters such as the half-saturation constant, the maximum adsorption constant, and the distribution coefficient for both the cellulase and cellulsoe have been experimentally determined for several substrates. These adsorption parameters vary with the source of cellulose and the pretreatment methods and are correlated with the crystallinity and the specific surface area of cellulose substrates. The changing pattern of adsorption profile of cellulase during the hydrolysis reaction has also been elucidated. For practical utilization of cellulosic materials, the cellulose structural properties and their effects on cellulase adsorption, and the rate of hydrolysis must be taken into consideration.  相似文献   

11.
12.
The culture filtrate of the crayfish plague fungus, Aphanomyces astaci (Saprolegniaceae), incubated in a peptone glucose medium was tested for chitinase activity under different conditions. The activities were assayed turbidimetrically using low-polymerized chitin as a substrate. Adsorption of chitinase was found to occur on chitin and probably on cellulose and sulphomethyl cellulose but not at all or only a little on some other cellulose derivatives. The pH optimum of the enzyme activity was found to lie at about pll 5.0–5.5. The stability was greatest near pH 6.5 and the highest degree of adsorption occurred at still higher pH values. Enzyme adsorption on the substrate seemed to protect the enzyme against inactivation by heating, shaking, and extreme pH-conditions. The chitinase activity was positively affected by the rest of the culture filtrate. Mercury, cobalt, and copper chlorides, and to a lesser degree some other metal salts, lowered the enzyme activity when present in the test medium. Cellobiose, but neither glucose nor N-acetyl glucosamine had a pronounced inhibiting effect on the activity. Neither cellobiose nor N-acetyl glucosamine seemed to affect chitinase adsorption on chitin. Some chelating and reducing compounds inactivated the culture filtrate. This activity-reducing effect of chelators was strongly prevented by EDTA in some cases.  相似文献   

13.
Effects of ionic strength and organic materials on copper ion uptake capacity using carboxylated alginic acid which showed very high metal ion uptake capacity were investigated. The ionic strength only had a slight effect on the decrease of copper ion uptake capacity regardless of NaCl concentration. And, the effect of organic materials such as NTA (nitrilotriaceticacid) and sodium hypophosphite on the copper ion uptake capacity was negligible. When the lead ion adsorbed on carboxylated alginic acid was desorbed by NTA, which showed high desorption efficiency, the best optimum concentration of NTA was about 0.01 M. Also desorption efficiency decreased, however, concentration factor increased as S/L ratio which is defined as the ratio of adding amount of adsorbed and volume of desorbing agent increased. In sequential adsorption and desorption cycles, the lead uptake capacity on carboxylated alginic acid was relatively maintained through cycles 1-5.  相似文献   

14.
Adsorption of a xylanase purified from a commercial xylanase, Pulpzyme HC, onto two model components of kraft pulp, crystalline cellulose (Avicel) and alkali-lignin (Indulin AT), was studied at 40°C. A considerable amount of the purified xylanase was adsorbed onto alkali-lignin in alkaline solutions. The adsorption of the purified xylanase onto crystalline cellulose was not significant and could be described by the Langmuir-type adsorption isotherm. The adsorption of the purified xylanase onto alkali-lignin was assumed to be caused by physical or van der Waals interaction based on the result that NaCl did not change the adsorption isotherm. © Rapid Science Ltd. 1998  相似文献   

15.
The germination of seeds of Eichhornia crassipes in locations distant from the foci of infestation may be a means of dispersal of this invasive plant. Nonetheless, no modern studies have examined the influence of single components on germination, although the influence of temperature, oxygen and redox potential was examined in earlier studies. The effects of pH, conductivity, nitrate, phosphate, potassium, calcium, iron and boron on germination of E. crassipes were determined in seed germination tests. The results showed that external input of nutrients influences germination, since neither pH nor conductivity alone had any effect, but there was a significant increase in germination in growth media containing phosphorus at 3.95 mg·l(-1) (P/L; 95.5%) and boron at 10 mg·l(-1) (B/L; 97.5%); at higher concentrations, the latter was toxic. These findings contribute to knowledge of factors controlling the germination of E. crassipes seeds. Consequently, E. crassipes seeds would find very good conditions for germination in water classified as hypereutrophic, which may play a decisive role in expansion of this plant.  相似文献   

16.
Characteristics of the cellulolytic system of the anaerobic fungus Piromyces sp. strain E2 with respect to adsorption onto microcrystalline cellulose were examined. Cellulolytic enzymes were separated by gel filtration chromatography into a high-molecular-mass complex with an apparent mass of approximately 1,200 to 1,400 kDa and proteins of lower molecular weights. Adsorption of cellulolytic enzymes was not only very fast (within 2 min, equilibrium was attained) but also very effective: Avicelase, endoglucanase, and beta-glucosidase activities from the high-molecular-mass complex were almost completely removed by Avicel. Adsorption of these enzyme activities was proportional and appeared to obey the Langmuir isotherm. For Avicelase, endoglucanase, and beta-glucosidase activities, the maximum amounts adsorbed (Amax) and apparent adsorption constants (Kad) were 16.8, 600, and 33.5 IU/g and 284, 6.93 and 126 ml/IU, respectively. The results of this study strongly support the existence of a multiprotein enzyme complex. This complex was found not to be specifically associated with cell wall fragments as judged by chitin determination.  相似文献   

17.
18.
The cadmium removing capacity of a biosorbent Calotropis procera, a perennial wild plant, is reported here. The biomass was found to possess high uptake capacity of Cd(II). Adsorption was pH dependent and the maximum removal was obtained at two different pH i.e. pH 5.0 and 8.0. Maximum biosorption capacity in batch and column mode was found to be 40 and 50.5 mg/g. The adsorption equilibrium (> or =90% removal) was attained within 5 min irrespective of the cadmium ion concentration. Interfering ions viz. Zn(II), As(III), Fe(II), Ni(II) interfered only when their concentration was higher than the equimolar ratio. The Freundlich isotherm best explained the adsorption, yet the monolayer adsorption was also noted at lower concentrations of Cd(II). The FTIR analysis indicates the involvement of hydroxyl (-OH), alkanes (-CH), nitrite (-NO(2)), and carboxyl group (-COO) chelates in metal binding. The complete desorption of the cadmium was achieved by 0.1M H(2)SO(4) and 0.1M HCl. The C. procera based Cd(II) removal technology appears feasible.  相似文献   

19.
The adsorption of purified ϕX174 to E. coli C and to E. coli C cell walls was investigated. Adsorption was measured by assaying for unadsorbed plaque formers. The amount of irreversible and reversible adsorption depends upon pH and divalent ion concentration. Maximum irreversible adsorption occurs in 0.1 M CaCl2 at 36°C. There is no detectable reversible adsorption at conditions of pH and CaCl2 concentration optimum for irreversible adsorption. Under these optimum conditions, diffusion is not the rate-limiting factor, and the encounter efficiency appears to be low. The rate constant is 1.0 × 10-10 ml/sec. Phages adsorbed irreversibly to live cells cause infection and to the isolated cell walls apparently cause release of DNA. There is a specific ϕX174 receptor site on the mucocomplex portion of the cell wall.  相似文献   

20.
Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号