首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosus sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO(2), and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).  相似文献   

2.
Monogastric herbivores such as the guinea pig depend on energy supply from enteric fermentation as short-chain fatty acids (SCFA) corresponding to 30-40% of their maintenance energy requirements. They evolved specific digestive system to adapt their indigenous microflora to plant polysaccharides fermentation. No information has been available about the adaptability of microbial fermentation in hindgut of the monogastric herbivorous to an animal protein diet. We investigated if the guinea pig can fully retrieve energy of an animal protein diet by hindgut fermentation compared with a plant protein diet. For comparison, we also studied two omnivores. End products of in vitro cecal fermentation (SCFA, ammonia and gases) were measured to judge how well an animal protein diet could be fermented. The animal protein diet resulted in the less intensive fermentation with increased feed intake and volume of cecal contents than the plant protein diet only in guinea pigs. This may be due to a limited capacity of the hindgut microflora to adapt to the substrate rich in animal protein. We also found that chick cecal contents produced methane at higher emission rate than ruminants.  相似文献   

3.
Hindgut Fermentation in Three Species of Marine Herbivorous Fish   总被引:2,自引:0,他引:2       下载免费PDF全文
Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosus sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO2, and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).  相似文献   

4.
哺乳动物的消化策略(英文)   总被引:13,自引:2,他引:11  
IanD.Hume 《动物学报》2002,48(1):1-19
理解动物的营养生态位是充分理解其整个生态学的基础,对于害兽控制和物种保护也很重要,食肉动物的小肠很发达,这可能与对食物的高消化能力有关;杂食性动物有更复杂的胃肠器官,其后端有可进行发酵的盲肠,消化物的平均滞留时间(mean retention times,MRTs)更长;最长的平均滞留时间见于食草动物,其消化道内高密度的微生物种群对不同滞留区内的消化物进行发酵,但是,并不是所有的食草动物都能够最大程度地消化植物纤维,只有反刍动物、骆驼和个体较大的后肠发酵动物(hindgut fermenter)能够具有这种能力,对比而言,许多其它的食草动物,如前肠发酵的有袋类和小型的后肠发酵动物如兔子、田鼠和负鼠等,它们具备可以使植物纤维消化效率最大的消化系统,可以在食物中的纤维素含量非常高的情况下仍能处理大量的食物。这些不同的消化策略使哺乳动物具有广幅的营养生态位。  相似文献   

5.
《Zoology (Jena, Germany)》2015,118(3):161-170
In fishes, the evolution of herbivory has occured within a spectrum of digestive strategies, with two extremes on opposite ends: (i) a rate-maximization strategy characterized by high intake, rapid throughput of food through the gut, and little reliance on microbial digestion or (ii) a yield-maximization strategy characterized by measured intake, slower transit of food through the gut, and more of a reliance on microbial digestion in the hindgut. One of these strategies tends to be favored within a given clade of fishes. Here, we tested the hypothesis that rate or yield digestive strategies can arise in convergently evolved herbivores within a given lineage. In the family Stichaeidae, convergent evolution of herbivory occured in Cebidichthys violaceus and Xiphister mucosus, and despite nearly identical diets, these two species have different digestive physiologies. We found that C. violaceus has more digesta in its distal intestine than other gut regions, has comparatively high concentrations (>11 mM) of short-chain fatty acids (SCFA, the endpoints of microbial fermentation) in its distal intestine, and a spike in β-glucosidase activity in this gut region, findings that, when coupled to long retention times (>20 h) of food in the guts of C. violaceus, suggest a yield-maximizing strategy in this species. X. mucosus showed none of these features and was more similar to its sister taxon, the omnivorous Xiphister atropurpureus, in terms of digestive enzyme activities, gut content partitioning, and concentrations of SCFA in their distal intestines. We also contrasted these herbivores and omnivores with other sympatric stichaeid fishes, Phytichthys chirus (omnivore) and Anoplarchus purpurescens (carnivore), each of which had digestive physiologies consistent with the consumption of animal material. This study shows that rate- and yield-maximizing strategies can evolve in closely related fishes and suggests that resource partitioning can play out on the level of digestive physiology in sympatric, closely related herbivores.  相似文献   

6.
刘全生  王德华 《兽类学报》2004,24(4):333-338
食粪行为广泛存在于草食性中小型哺乳动物中,是特指动物取食由盲肠内容物所形成的粪便的行为。这些动物具有特殊的结肠分离机制,能够产生两种不同的粪便。食粪行为延长了食物在消化道中的平均滞留时间;提高了对高纤维食物的消化率;弥补了食物中氨基酸和维生素的缺乏,满足了动物对这些营养物质的需求;是动物消化过程中的一个特殊组成部分。食粪行为的节律性是动物对取食和食粪的风险权衡的结果。食粪行为的发展是与动物草食性的特点紧密相关的,是动物对身体较小、食物质量低和天敌威胁等不利因素适应的结果。本对这些方面的研究进展进行了综述。  相似文献   

7.
Short‐chain fatty acids (SCFA), viz. acetate, propionate and butyrate are quantitatively important substrates in ruminant energy metabolism. In the reviewed literature, 16–44% of ME intake was recovered as portal appearance of SCFA. This is considerably lower than expected when related to the estimated intra‐gastric flux of SCFA. The discrepancy is caused by portal drained viscera metabolism of arterially abundant metabolites e.g., acetate and the metabolism of acetate and butyrate to acetoacetate and D‐3‐hydroxybu‐tyrate in the absorptive epithelia. Even though considerable variations between experiments on acetate and propionate appearance are found, there seems to be a great deal of evidence that the proportion of gastroin‐testinally produced acetate and propionate absorbed to the portal blood is 50–75%. The portal recovery of butyrate has been found to be between 10 and 36% dependent on intraruminal infusion rate.

It is concluded that major parts of acetate and propionate are directly absorbed to the portal vein. The true absorption rate of acetate can only be estimated by taking the portal drained viscera metabolism of arterial actetate into account. Butyrate is generally found to have a low recovery in the portal vein, but the production of D‐3‐hydroxybutyrate seems to be underestimated in major parts of the literature. It is therefore necessary to measure portal appearance as well as portal drained viscera metabolism to assess the quantitative as well as the qualitative contribution of SCFA and SCFA metabolites to whole animal metabolism.  相似文献   

8.
Faeces could be used for evaluating the balance of the equine hindgut microbial ecosystem, which would offer a practical method for assessing gut health and how this relates to disease. However, previous studies concluded that faeces microbial ecosystem was not representative of the proximal hindgut (caecum and ventral colon). This study aimed to evaluate if variations of the faecal microbial ecosystem were similar to those observed in the proximal hindgut. Six horses, fistulated in the caecum and right ventral (RV) colon, were subjected to a gradual change of diet, from a 100% hay (high fibre) diet (2.2 DM kg/day per 100 kg BW) to a 57% hay+43% barley (high starch) diet (0.8 DM kg/day per 100 kg BW hay and 0.6 DM kg/day per 100 kg BW barley). The two diets were iso-energetic and fed over a 3-week trial period. Samples of digesta from the caecum, RV colon and faeces were collected two times on the 10th and 20th day of the trial, for each diet to assess the microbial ecosystem parameters by both classical culture technics and biochemical methods. The variations observed in the caecal and colonic bacterial composition (increase in total anaerobic, amylolytic and lactate-utilizing and decrease in cellulolytic bacteria concentrations) and microbial activity (changes in volatile fatty acids concentrations and increase in lactate concentrations) demonstrated that the hay+barley diet caused changes in the hindgut microbial ecosystem. Similar variations were observed in the faecal microbial ecosystem. Feeding the hay+barley diet resulted in higher concentrations of faecal lipopolysaccharides. The functional bacterial group concentrations (cellulolytics, amylolytics and lactate utilizers) were significantly correlated between caecum and faeces and between colon and faeces. From analyses of the metabolites produced from microbial activity, only valerate concentration in the caecum and the proportion of propionate were significantly correlated with the same parameters in the faeces. Results of the principal component analysis performed between all the caecal/faecal and colonic/faecal parameters revealed that the total anaerobic and cellulolytic bacteria concentrations, as well as valerate, l-lactate and lipopolysaccharide concentrations were strongly correlated with several microbial parameters in the caecum (P<0.027; r>|0.45|) and in the colon (P<0.013; r>|0.50|). This demonstrated that faecal samples and their bacterial analyses could be used to represent caecum and RV colon hindgut microbial ecosystem in terms of variations during a change from a high-fibre to a high-starch diet, and thus could be markers of particular interest to diagnostic proximal hindgut microbial disturbances.  相似文献   

9.
寄生于人体的肠道菌群是一个高度动态化和个体化的复杂生态系统,受遗传、环境、饮食、年龄和运动等因素的影响,并通过其产生的代谢物与机体众多组织器官产生广泛的应答效应。短链脂肪酸(short chain fatty acid, SCFA)主要是由位于盲肠和结肠内的菌群以膳食纤维为底物发酵产生,其被吸收进入肠系膜上下静脉,随后汇入门静脉至肝。部分短链脂肪酸被肝作为糖异生和脂质合成的底物,剩余的短链脂肪酸以游离脂肪酸的形式经肝静脉进入外周循环。研究发现,运动可使产生SCFA的肠道菌群组分的丰度提高和参与调控SCFA生成的相关基因表达增加,使肠道中短链脂肪酸含量增加。由短链脂肪酸刺激结肠内分泌细胞合成分泌的胰高血糖素样肽1(glucagon like peptide-1, GLP-1)可促使胰岛B细胞合成分泌胰岛素,进而调节骨骼肌的葡萄糖摄取与糖原合成。此外,短链脂肪酸通过提高骨骼肌胰岛素受体底物1(insulin receptor substrate 1,IRS1)基因转录起始位点附近的组蛋白乙酰化水平,增强骨骼肌的胰岛素敏感性。同时,短链脂肪酸通过激活腺苷酸活化蛋白质激酶(AMP-activated protein kinase, AMPK)促进骨骼肌的脂肪酸摄取、脂肪分解和线粒体生物发生,抑制脂肪合成。本文就肠道菌群代谢物——短链脂肪酸概述、运动对产生短链脂肪酸的肠道菌群的影响和运动介导肠道菌群代谢物——短链脂肪酸对骨骼肌代谢调控机制的最新研究进展进行综述,为骨骼肌运动适应的新机制研究提供理论依据。  相似文献   

10.
Relative to other herbivorous vertebrates, the nutritional ecology and digestive physiology of anuran larvae remain poorly understood. Our objective was to compare gut structure and inhabitants, digesta passage, and microbial fermentation in bullfrog tadpoles (Rana catesbeiana) to those in other herbivores. Bullfrog tadpole gastrointestinal tracts were long and voluminous, with an enlarged colon that harbored a diverse symbiotic community. The transit time for particulate markers passing through bullfrog tadpoles was 6 h, the median retention time was 8-10 h, and gut clearance was 10-14 h postingestion. Relatively high levels of short-chain fatty acids in the hindgut of tadpoles indicated active microbial fermentation in this gut region. This report represents the first account of gastrointestinal fermentation in the class Amphibia. On the basis of in vitro fermentation assays, we estimated that microbial fermentation in the hindgut provides 20% of the total daily energy requirement of bullfrog tadpoles. These tadpoles also exhibited coprophagy, a practice that provides important nutritive gains in other herbivores. The physiological and behavioral characteristics of these tadpoles are remarkably similar to those of other small-bodied, hindgut-fermenting vertebrates, suggesting convergent digestive strategies among a broad range of herbivorous taxa.  相似文献   

11.
The human gut microbiota ferments dietary non‐digestible carbohydrates into short‐chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health‐promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross‐feeding of intermediary metabolites (in particular lactate, succinate and 1,2‐propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.  相似文献   

12.
The present study investigated the microbial degradation of the plant flavonol quercetin and its naturally occurring glycosides isoquercitrin and rutin in the porcine hindgut. The experiments were carried out with the semicontinuous colon-simulation technique. The fluid and particle phase of pig hindgut contents from freshly slaughtered animals were used for the in vitro incubations. Following a five-day equilibration period, quercetin, isoquercitrin or rutin were administered to fermentation vessels and their turnover rate was determined. None of the flavonols affected parameters of microbial fermentation like pH, redox potential or VFA production. The turnover rate for isoquercitrin was seven times higher than the turnover for the fermentation fluid. The turnover rates for quercetin and rutin were four and twofold higher than fluid turnover, respectively. After administration of isoquercitrin or rutin, their aglycone quercetin was detected as an intermediary metabolite. Under sterile conditions using autoclaved incubation fluids and hindgut contents, turnover rates for quercetin and rutin were still higher than the fluid turnover in the fermentation vessels. This indicates a certain chemical instability of the flavonols and/or adsorption to ingesta particles. Thus, flavonols are subjected to microbial metabolism in the porcine hindgut. The glycosidic structure strongly influences the rate of metabolism.  相似文献   

13.
Mammalian herbivores host diverse microbial communities to aid in fermentation and potentially detoxification of dietary compounds. However, the microbial ecology of herbivorous rodents, especially within the largest superfamily of mammals (Muroidea) has received little attention. We conducted a preliminary inventory of the intestinal microbial community of Bryant’s woodrat (Neotoma bryanti), an herbivorous Muroidea rodent. We collected woodrat feces, generated 16S rDNA clone libraries, and obtained sequences from 171 clones. Our results demonstrate that the woodrat gut hosts a large number of novel microorganisms, with 96% of the total microbial sequences representing novel species. These include several microbial genera that have previously been implicated in the metabolism of plant toxins. Interestingly, a comparison of the community structure of the woodrat gut with that of other mammals revealed that woodrats have a microbial community more similar to foregut rather than hindgut fermenters. Moreover, their microbial community was different to that of previously studied herbivorous rodents. Therefore, the woodrat gut may represent a useful resource for the identification of novel microbial genes involved in cellulolytic or detoxification processes.  相似文献   

14.
Luminal isobutyrate, a relatively poor metabolized short-chain fatty acid (SCFA), induces HCO(3) secretion via a Cl-independent, DIDS-insensitive, carrier-mediated process as well as inhibiting both Cl-dependent and cAMP-induced HCO(3) secretion. The mechanism(s) responsible for these processes have not been well characterized. HCO(3) secretion was measured in isolated colonic mucosa mounted in Lucite chambers using pH stat technique and during microperfusion of isolated colonic crypts. (14)C-labeled butyrate, (14)C-labeled isobutyrate, and (36)Cl uptake were also determined by apical membrane vesicles (AMV) isolated from surface and/or crypt cells. Butyrate stimulation of Cl-independent, DIDS-insensitive 5-nitro-3-(3-phenylpropyl-amino)benzoic acid-insensitive HCO(3) secretion is greater than that by isobutyrate, suggesting that both SCFA transport and metabolism are critical for HCO(3) secretion. Both lumen and serosal 25 mM butyrate inhibit cAMP-induced HCO(3) secretion to a comparable degree (98 vs. 90%). In contrast, Cl-dependent HCO(3) secretion is downregulated by lumen 25 mM butyrate considerably more than by serosal butyrate (98 vs. 37%). Butyrate did not induce HCO(3) secretion in isolated microperfused crypts, whereas an outward-directed HCO(3) gradient-driven induced (14)C-butyrate uptake by surface but not crypt cell AMV. Both (36)Cl/HCO(3) exchange and potential-dependent (36)Cl movement in AMV were inhibited by 96-98% by 20 mM butyrate. We conclude that 1) SCFA-dependent HCO(3) secretion is the result of SCFA transport across the apical membrane via a SCFA/HCO(3) exchange more than intracellular SCFA metabolism; 2) SCFA-dependent HCO(3) secretion is most likely a result of an apical membrane SCFA/HCO(3) exchange in surface epithelial cells; 3) SCFA downregulates Cl-dependent and cAMP-induced HCO(3) secretion secondary to SCFA inhibition of apical membrane Cl/HCO(3) exchange and anion channel activity, respectively.  相似文献   

15.
Short chain fatty acids (SCFA) stimulate colonic Na+ absorption and inhibit cAMP and cGMP-mediated Cl- secretion. It is uncertain whether SCFA have equivalent effects on absorption and whether SCFA inhibition of Cl- secretion involves effects on mucosal enzymes. Unidirectional Na+ fluxes were measured across stripped colonic segments in the Ussing chamber. Enzyme activity was measured in cell fractions of scraped colonic mucosa. Mucosal 50 mM acetate, propionate, butyrate and poorly metabolized isobutyrate stimulated proximal colon Na+ absorption equally (300%). Neither 2-bromo-octanoate, an inhibitor of beta-oxidation, nor carbonic anhydrase inhibition affected this stimulation. All SCFA except acetate stimulated distal colon Na+ absorption 200%. Only one SCFA affected proximal colon cGMP phosphodiesterase (PDE) (18% inhibition by 50 mM butyrate). All SCFA at 50 mM stimulated distal colon cAMP PDE (24-43%) and decreased forskolin-stimulated mucosal cAMP content. None of the SCFA affected forskolin-stimulated adenylyl cyclase in distal colon or ST(a)-stimulated guanylyl cyclase in proximal colon. Na+-K+-ATPase in distal colon was inhibited 23-51% by the SCFA at 50 mM. We conclude that all SCFA (except acetate in distal colon) stimulate colonic Na+ absorption equally, and the mechanism does not involve mucosal SCFA metabolism or carbonic anhydrase. SCFA inhibition of cAMP-mediated secretion may involve SCFA stimulation of PDE and inhibition of Na+-K+-ATPase.  相似文献   

16.
Abstract

The present study investigated the microbial degradation of the plant flavonol quercetin and its naturally occurring glycosides isoquercitrin and rutin in the porcine hindgut. The experiments were carried out with the semicontinuous colon-simulation technique. The fluid and particle phase of pig hindgut contents from freshly slaughtered animals were used for the in vitro incubations. Following a five-day equilibration period, quercetin, isoquercitrin or rutin were administered to fermentation vessels and their turnover rate was determined. None of the flavonols affected parameters of microbial fermentation like pH, redox potential or VFA production. The turnover rate for isoquercitrin was seven times higher than the turnover for the fermentation fluid. The turnover rates for quercetin and rutin were four and twofold higher than fluid turnover, respectively. After administration of isoquercitrin or rutin, their aglycone quercetin was detected as an intermediary metabolite. Under sterile conditions using autoclaved incubation fluids and hindgut contents, turnover rates for quercetin and rutin were still higher than the fluid turnover in the fermentation vessels. This indicates a certain chemical instability of the flavonols and/or adsorption to ingesta particles. Thus, flavonols are subjected to microbial metabolism in the porcine hindgut. The glycosidic structure strongly influences the rate of metabolism.  相似文献   

17.
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice.  相似文献   

18.
【目的】本研究旨在分析比较扩头蔡白蚁Tsaitermes ampliceps工蚁前中肠和后肠及其内容物的蛋白构成和表达差异,挖掘降解木质纤维素的相关酶和蛋白。【方法】通过扩头蔡白蚁工蚁的前中肠和后肠及其内容物蛋白的双向电泳,对高表达或高差异表达的47个蛋白点进行MALDI-TOF/MS测序,并进行生物信息学分析。【结果】测序分析发现,扩头蔡白蚁肠道及其内容物蛋白中有结构蛋白13个、调节蛋白9个、白蚁代谢相关蛋白10个、微生物代谢相关蛋白7个。经PD Quest分析发现,在前中肠和后肠有11个蛋白均高表达;仅在前中肠表达的蛋白有12个,主要是白蚁代谢相关蛋白和调节蛋白;仅在后肠表达的蛋白有8个,主要是微生物代谢相关蛋白。整个肠道内参与木质纤维素降解的相关酶有5个,分别是白蚁自身分泌的内源性纤维素酶,细菌产生的内切-β-1,4-葡聚糖酶和过氧化物歧化酶以及原生动物产生的GH11。【结论】白蚁对木质纤维素食物的降解主要在前中肠,后肠对降解产物进一步降解并进行微生物生长代谢。这些降解产物和微生物菌体蛋白为白蚁的肛哺提供营养成分。  相似文献   

19.
Humivorous scarab beetle larvae can thrive exclusively on soil organic matter. Feeding experiments have revealed that the larva of Pachnoda ephippiata mineralizes all major humus components except the polyphenolic fraction. High proteolytic activity in the alkaline midgut fluid and an enormous ammonia production during gut passage suggested that peptidic soil components are an important dietary resource for the larva. By comparing acid-hydrolyzable amino acids in food soil and feces, we showed that a significant fraction of the peptides in soil are removed during gut passage. This agrees well with the high concentrations of free amino acids found the midgut section. Incubation experiments revealed the presence of substantial particle-associated proteolytic activity also in the hindgut, most probably due to microbial activity. High rates of ammonia formation in hindgut homogenates and the conversion of radiolabeled amino acids to acetate and propionate indicated that microbial fermentations of soil peptides play an important role in the hindgut. This was corroborated by viable counts of amino-acid-fermenting bacteria, which formed a substantial fraction of the hindgut microbiota. A complete inventory of organic and inorganic nitrogen species before, during, and after gut passage revealed the formation of nitrite and nitrate in midgut and hindgut, and a substantial nitrogen deficit in the feces, suggesting that part of the ammonia formed by mineralization is subjected to oxidation and subsequent denitrification to N2. Together, the results strongly support the hypothesis that peptidic soil components form a major energy and nutrient source for humivorous insects, supplying the animal with microbial fermentation products and essential amino acids.  相似文献   

20.
Having evolved as a grazing animal, a horse's digestive physiology is characterized by rapid gastric transit, a rapid but intense enzymatic digestion along the small intestine, and a long and intense microbial fermentation in the large intestine. The process of understanding and describing feed degradation mechanisms in the equine digestive system in general, and in the hindgut ecosystem in particular, is essential. Regardless of its importance for the nutritional status of the host, the significance of the cecum-colon ecosystem has not yet been fully understood, and few reports have focused deeply on the contribution of the hindgut microbial population to the nitrogen and energy requirements of the horse. Compared to ruminal activity, very little is known about hindgut ecosystem activity in the horse. Information concerning the metabolism of this microbial population and its requirements is lacking. The use of internal bacterial markers for quantifying microbial outflow in ruminants is widely reported. These techniques can be applied to cecum-colon microbial quantification, contributing to a better characterization of this ecosystem. It is likely wrong to believe that the optimization strategy in the hindgut is similar to what happens in the rumen - that is, to maximize microbial growth and, therefore, fermentation. If we consider the type of substrate that, in normal conditions, arrives in the hindgut, we can expect it to be nitrogen limiting, providing limited nitrogen-based substrates for microbial fermentation. In this review paper, we intend to gather existing information on the equine ecosystem and to provide future perspectives of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号