首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andolfatto P  Wall JD 《Genetics》2003,165(3):1289-1305
Previous multilocus surveys of nucleotide polymorphism have documented a genome-wide excess of intralocus linkage disequilibrium (LD) in Drosophila melanogaster and D. simulans relative to expectations based on estimated mutation and recombination rates and observed levels of diversity. These studies examined patterns of variation from predominantly non-African populations that are thought to have recently expanded their ranges from central Africa. Here, we analyze polymorphism data from a Zimbabwean population of D. melanogaster, which is likely to be closer to the standard population model assumptions of a large population with constant size. Unlike previous studies, we find that levels of LD are roughly compatible with expectations based on estimated rates of crossing over. Further, a detailed examination of genes in different recombination environments suggests that markers near the telomere of the X chromosome show considerably less linkage disequilibrium than predicted by rates of crossing over, suggesting appreciable levels of exchange due to gene conversion. Assuming that these populations are near mutation-drift equilibrium, our results are most consistent with a model that posits heterogeneity in levels of exchange due to gene conversion across the X chromosome, with gene conversion being a minor determinant of LD levels in regions of high crossing over. Alternatively, if levels of exchange due to gene conversion are not negligible in regions of high crossing over, our results suggest a marked departure from mutation-drift equilibrium (i.e., toward an excess of LD) in this Zimbabwean population. Our results also have implications for the dynamics of weakly selected mutations in regions of reduced crossing over.  相似文献   

2.
Meiotic recombination is a fundamental cellular mechanism in sexually reproducing organisms and its different forms, crossing over and gene conversion both play an important role in shaping genetic variation in populations. Here, we describe a coalescent-based full-likelihood Markov chain Monte Carlo (MCMC) method for jointly estimating the crossing-over, gene-conversion, and mean tract length parameters from population genomic data under a Bayesian framework. Although computationally more expensive than methods that use approximate likelihoods, the relative efficiency of our method is expected to be optimal in theory. Furthermore, it is also possible to obtain a posterior sample of genealogies for the data using this method. We first check the performance of the new method on simulated data and verify its correctness. We also extend the method for inference under models with variable gene-conversion and crossing-over rates and demonstrate its ability to identify recombination hotspots. Then, we apply the method to two empirical data sets that were sequenced in the telomeric regions of the X chromosome of Drosophila melanogaster. Our results indicate that gene conversion occurs more frequently than crossing over in the su-w and su-s gene sequences while the local rates of crossing over as inferred by our program are not low. The mean tract lengths for gene-conversion events are estimated to be ~70 bp and 430 bp, respectively, for these data sets. Finally, we discuss ideas and optimizations for reducing the execution time of our algorithm.  相似文献   

3.
Homologous recombination can result in the transfer of genetic information from one DNA molecule to another (gene conversion). These events are often accompanied by a reciprocal exchange between the interacting molecules (termed "crossing over"). This association suggests that the two types of events could be mechanistically related. We have analyzed the repair, by homologous recombination, of a broken chromosome in yeast. We show that gene conversion can be uncoupled from crossing over when the length of homology of the interacting substrates is below a certain threshold. In addition, a minimal length of homology on each broken chromosomal arm is needed for crossing over. We also show that the coupling between gene conversion and crossing over is affected by the mismatch repair system; mutations in the MSH2 or MSH6 genes cause an increase in the crossing over observed for short alleles. Our results provide a mechanism to explain how chromosomal recombinational repair can take place without altering the stability of the genome.  相似文献   

4.
We have stimulated mitotic and meiotic gene conversion between non-tandem direct repeats of ADE4 by a defined double-strand break imparted in vivo to one of two copies of the gene. The experimental design permitted us to distinguish unambiguously between reciprocal intra-chromosomal crossing over and non-reciprocal break-join events that could accompany the induced conversions. We observed that (1) less than 10% of the induced conversion events are accompanied by intra-chromosomal crossing over in both mitosis and meiosis; (2) non-reciprocal break-join is not stimulated by the double-strand breaks; (3) a double-strand break in meiosis is repaired off intra-chromosomal homology (if available) with approximately sevenfold preference over repair off the homologous chromosome. Our observations, analyzed in the light of previous investigations of spontaneous inter and intra-chromosomal crossing over and gene conversion, lead to the view that chromosomal configuration constrains intra-chromosomal crossing over accompanying conversion between closely spaced repeated genes during resolution of the conversion intermediate.  相似文献   

5.
Morrell PL  Toleno DM  Lundy KE  Clegg MT 《Genetics》2006,173(3):1705-1723
Recombination occurs through both homologous crossing over and homologous gene conversion during meiosis. The contribution of recombination relative to mutation is expected to be dramatically reduced in inbreeding organisms. We report coalescent-based estimates of the recombination parameter (rho) relative to estimates of the mutation parameter (theta) for 18 genes from the highly self-fertilizing grass, wild barley, Hordeum vulgare ssp. spontaneum. Estimates of rho/theta are much greater than expected, with a mean rho/theta approximately 1.5, similar to estimates from outcrossing species. We also estimate rho with and without the contribution of gene conversion. Genotyping errors can mimic the effect of gene conversion, upwardly biasing estimates of the role of conversion. Thus we report a novel method for identifying genotyping errors in nucleotide sequence data sets. We show that there is evidence for gene conversion in many large nucleotide sequence data sets including our data that have been purged of all detectable sequencing errors and in data sets from Drosophila melanogaster, D. simulans, and Zea mays. In total, 13 of 27 loci show evidence of gene conversion. For these loci, gene conversion is estimated to contribute an average of twice as much as crossing over to total recombination.  相似文献   

6.
There is a growing recognition that gene conversion can be an important factor in shaping fine-scale patterns of linkage disequilibrium in the human genome. We devised simple multilocus summary statistics for estimating gene-conversion rates from genomewide polymorphism data sets. In addition to being computationally feasible for very large data sets, these summaries were designed to yield robust estimates of gene-conversion rates in the presence of variation in crossing-over rates. Using our summaries, we analyzed 21,840 biallelic single-nucleotide polymorphisms (SNPs) on human chromosome 21. Our results indicate that models including both crossing over and gene conversion fit the overall short-range data (0-5 kb) of chromosome 21 much better than do models including crossing over alone. The estimated ratio of gene-conversion rate to crossing-over rate has a range of 1.6-9.4, depending on the assumed conversion tract length (in the range of 500-50 bp). Removal of the 5,696 SNPs that occur in known mutational hotspots (CpG sites) did not significantly change our conclusions, suggesting that recurrent mutations alone cannot explain our data.  相似文献   

7.
A. R. Godwin  R. M. Liskay 《Genetics》1994,136(2):607-617
We examined the effects of insertion mutations on intrachromosomal recombination. A series of mouse L cell lines carrying mutant herpes simplex virus thymidine kinase (tk) heteroalleles was generated; these lines differed in the nature of their insertion mutations. In direct repeat lines with different large insertions in each gene, there was a 20-fold drop in gene conversion rate and only a five-fold drop in crossover rate relative to the analogous rates in lines with small insertions in each gene. Surprisingly, in direct repeat lines carrying the same large insertion in each gene, there was a larger drop in both types of recombination. When intrachromosomal recombination between inverted repeat tk genes with different large insertions was examined, we found that the rate of gene conversion dropped five-fold relative to small insertions, while the rate of crossing over was unaffected. The differential effects on conversion and crossing over imply that gene conversion is more sensitive to insertion mutation size. Finally, the fraction of gene conversions associated with a crossover increased from 2% for inverted repeats with small insertions to 18% for inverted repeats with large insertions. One interpretation of this finding is that during intrachromosomal recombination in mouse cells long conversion tracts are more often associated with crossing over.  相似文献   

8.
We have inserted a histone H1-GFP fusion gene adjacent to three loci on different chromosomes of Neurospora crassa and made mating pairs in which a wild type version of GFP is crossed to one with a mutation in the 5' end of GFP. The loci are his-3, am and his-5, chosen because recombination mechanisms appear to differ between his-3 and am, and because crossing over adjacent to his-5, like his-3, is regulated by rec-2. At his-3, the frequencies of crossing over between GFP and the centromere and of conversion of 5'GFP to GFP(+) are comparable to those obtained by classical recombination assays, as is the effect of rec-2 on these frequencies, suggesting that our system does not alter the process of recombination. At each locus we have obtained sufficient data, on both gene conversion and crossing over, to be able to assess the effect of deletion of any gene involved in recombination. In addition, crosses between a GFP(+) strain and one with normal sequence at all three loci have been used to measure the interval to the centromere and to show that GFP experiences gene conversion with this system. Since any gene expressed in meiosis is silenced in Neurospora if hemizygous, any of our GFP(+) strains can be used as a quick screen to determine if a gene deleted by the Neurospora Genome Project is involved in crossing over or gene conversion.  相似文献   

9.
We have used closely flanking molecular markers located ~4 kb distal and 6 kb proximal of the am locus to investigate the incidence of crossover events associated with the generation of prototrophic recombinants in a cross heteroallelic am(1) am(6). Ninety-three percent of prototrophs were generated by events that did not recombine the molecular markers, indicating that simple conversion accounts for the formation of most prototrophs and that associated crossovers are much less frequent (~0.07) than estimated previously using more distant flanking markers. This suggests that conversion and crossing over during meiosis may arise from distinct mechanisms or that if, as is widely supposed, conversion and crossing over result from alternate modes of resolution of Holliday junctions then, at least for the am locus of Neurospora, the mode of resolution is strongly biased in favor of retaining the parental association of flanking sequences. Because estimates of the association of conversion and crossing over based on more distant gene markers are similar for yeast and Neurospora (~0.35), our observation may have general significance.  相似文献   

10.
A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele. Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.  相似文献   

11.
Smith GR  Boddy MN  Shanahan P  Russell P 《Genetics》2003,165(4):2289-2293
Most models of homologous recombination invoke cleavage of Holliday junctions to explain crossing over. The Mus81.Eme1 endonuclease from fission yeast and humans cleaves Holliday junctions and other branched DNA structures, leaving its physiological substrate uncertain. We report here that Schizosaccharomyces pombe mus81 mutants have normal or elevated frequencies of gene conversion but 20- to 100-fold reduced frequencies of crossing over. Thus, gene conversion and crossing over can be genetically separated, and Mus81 is required for crossing over, supporting the hypothesis that the fission yeast Mus81.Eme1 protein complex resolves Holliday junctions in meiotic cells.  相似文献   

12.
The RAD3 gene of Saccharomyces cerevisiae is required for UV excision-repair and is essential for cell viability. We have identified the rem1 mutations (enhanced spontaneous mitotic recombination and mutation) of Saccharomyces cerevisiae as alleles of RAD3 by genetic mapping, complementation with the cloned wild-type gene, and DNA hybridization. The high levels of spontaneous mitotic gene conversion, crossing over, and mutation conferred upon cells by the rem1 mutations are distinct from the effects of all other alleles of RAD3. We present preliminary data on the localization of the rem1 mutations within the RAD3 gene. The interaction of the rem1 mutant alleles with a number of radiation-sensitive mutations is also different than the interactions reported for previously described (UV-sensitive) alleles of RAD3. Double mutants of rem1 and a defect in the recombination-repair pathway are inviable, while double mutants containing UV-sensitive alleles of RAD3 are viable. The data presented here demonstrate that: (1) rem1 strains containing additional mutations in other excision-repair genes do not exhibit elevated gene conversion; (2) triple mutants containing rem1 and mutations in both excision-repair and recombination-repair are viable; (3) such triple mutants containing rad52 have reduced levels of gene conversion but wild-type frequencies of crossing over. We have interpreted these observations in a model to explain the effects of rem1. Consistent with the predictions of the model, we find that the size of DNA from rem1 strains, as measured by neutral sucrose gradients, is smaller than wild type.  相似文献   

13.
Mitotic recombination in yeast   总被引:8,自引:0,他引:8  
Mitotic crossing over in diploid cells, heterozygous for a recessive mutation, results in homozygosis and phenotypic expression of the mutant allele. In addition to crossing over, gene conversion also takes place during mitotic growth. As in meiosis, gene conversion and crossing over are associated.  相似文献   

14.
A. Vincent  T. D. Petes 《Genetics》1989,122(4):759-772
We examined meiotic and mitotic gene conversion events involved in deletion of Ty elements and other insertions from the genome of the yeast Saccharomyces cerevisiae. We found that Ty elements and one other insertion were deleted by mitotic gene conversion less frequently than point mutations at the same loci. One non-Ty insertion similar in size to Ty, however, did not show this bias. Mitotic conversion events deleting insertions were more frequently associated with crossing over than those deleting point mutations. In meiosis, conversion events duplicating the element were more common than those that deleted the element for one of the loci (HIS4) examined.  相似文献   

15.
BackgroundSocial hymenoptera, the honey bee (Apis mellifera) in particular, have ultra-high crossover rates and a large degree of intra-genomic variation in crossover rates. Aligned with haploid genomics of males, this makes them a potential model for examining the causes and consequences of crossing over. To address why social insects have such high crossing-over rates and the consequences of this, we constructed a high-resolution recombination atlas by sequencing 55 individuals from three colonies with an average marker density of 314 bp/marker.ResultsWe find crossing over to be especially high in proximity to genes upregulated in worker brains, but see no evidence for a coupling with immune-related functioning. We detect only a low rate of non-crossover gene conversion, contrary to current evidence. This is in striking contrast to the ultrahigh crossing-over rate, almost double that previously estimated from lower resolution data. We robustly recover the predicted intragenomic correlations between crossing over and both population level diversity and GC content, which could be best explained as indirect and direct consequences of crossing over, respectively.ConclusionsOur data are consistent with the view that diversification of worker behavior, but not immune function, is a driver of the high crossing-over rate in bees. While we see both high diversity and high GC content associated with high crossing-over rates, our estimate of the low non-crossover rate demonstrates that high non-crossover rates are not a necessary consequence of high recombination rates.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0566-0) contains supplementary material, which is available to authorized users.  相似文献   

16.
Cutting edge: expansion of the KIR locus by unequal crossing over   总被引:6,自引:0,他引:6  
The killer Ig-like receptor (KIR) genes have high sequence similarity and are organized in a head-to-tail fashion. These properties may enhance misalignment of homologous chromosomes during synapsis preceding meiotic recombination, resulting in unequal crossing over. We have identified an extended KIR haplotype that contains a novel hybrid gene and two copies of each of two previously described KIR genes. A parsimonious mechanism for the derivation of this haplotype invokes unequal crossing over between two known ancestral KIR haplotypes. These data raise the possibility that unequal crossing over may be responsible in part for the expansion/contraction of KIR haplotypes as well as other homologous gene families that map in tandem.  相似文献   

17.
C. J. Basten  T. Ohta 《Genetics》1992,132(1):247-252
We investigate the evolution of a multigene family incorporating the forces of drift, mutation, gene conversion, unequal crossing over and selection. The use of simulation studies is required due to the complexity of the model. Selection is modeled in two modes: positive selection as a function of the number of different beneficial alleles and negative selection against deleterious alleles. We assume that gene conversion is unbiased, and that all mutations are initially deleterious. Compensation between mutants creates beneficial and neutral alleles, and allowances are made for compensatory mutations either within or between the members of a multigene family. We find that gene conversion can enhance the rate of acquisition of compensatory advantageous mutations when genes are redundant.  相似文献   

18.
Maloisel L  Bhargava J  Roeder GS 《Genetics》2004,167(3):1133-1142
A screen for mutants of budding yeast defective in meiotic gene conversion identified a novel allele of the POL3 gene. POL3 encodes the catalytic subunit of DNA polymerase delta, an essential DNA polymerase involved in genomic DNA replication. The new allele, pol3-ct, specifies a protein missing the last four amino acids. pol3-ct shows little or no defect in DNA replication, but displays a reduction in the length of meiotic gene conversion tracts and a decrease in crossing over. We propose a model in which DNA synthesis determines the length of strand exchange intermediates and influences their resolution toward crossing over.  相似文献   

19.
B. A. Kunz  G. R. Taylor    R. H. Haynes 《Genetics》1986,114(2):375-392
The biosynthesis of thymidylate in the yeast Saccharomyces cerevisiae can be inhibited by antifolate drugs. We have found that antifolate treatment enhances the formation of leucine prototrophs in a haploid strain of yeast carrying, on the same chromosome, two different mutant leu2 alleles separated by Escherichia coli plasmid sequences. That this effect is a consequence of thymine nucleotide depletion was verified by the finding that provision of exogenous thymidylate eliminates the increased production of Leu+ colonies. DNA hybridization analysis revealed that recombination, including reciprocal exchange, gene conversion and unequal sister-chromatid crossing over, between the duplicated genes gave rise to the induced Leu+ segregants. Although gene conversion unaccompanied by crossing over was responsible for the major fraction of leucine prototrophs, events involving reciprocal exchange exhibited the largest increase in frequency. These data show that recombination is induced between directly repeated DNA sequences under conditions of thymine nucleotide depletion. In addition, the results of this and previous studies are consistent with the possibility that inhibition of thymidylate biosynthesis in yeast may create a metabolic condition that provokes all forms of mitotic recombination.  相似文献   

20.
Innan H 《Genetics》2002,161(2):865-872
A simple two-locus gene conversion model is considered to investigate the amounts of DNA variation and linkage disequilibrium in small multigene families. The exact solutions for the expectations and variances of the amounts of variation within and between two loci are obtained. It is shown that gene conversion increases the amount of variation within each locus and decreases the amount of variation between two loci. The expectation and variance of the amount of linkage disequilibrium are also obtained. Gene conversion generates positive linkage disequilibrium and the degree of linkage disequilibrium decreases as the recombination rate is increased. Using the theoretical results, a method for estimating the mutation, gene conversion, and recombination parameters is developed and applied to the data of the Amy multigene family in Drosophila melanogaster. The gene conversion rate is estimated to be approximately 60-165 times higher than the mutation rate for synonymous sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号