首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In theArabidopsis genome, approximately 120 UDP-glycosyltransferases (UGTs) have been annotated. They generally catalyze the transfer of sugars to various acceptor molecules, including flavonoids. To better understand their physiological roles, we analyzed a tandemly located putative flavonoid UGT cluster comprisingUGT73B1, UGT73B2, andUGT73B3 on Chromosome IV. We then isolated four loss-of-function mutations —ugt73b1- 1, ugt73b2- 1, ugt73b3- 1, andugt73b3- 2. In our expression analysis, the closely related UCTs exhibited tissue-specific patterns of expression that were severely altered in their respective mutant plants. For example,UGT73B2 was up-regulated inugt73b1- 1, whereasUGT73B7 was highly expressed inugt73b2- 1, ugt73b3- t, andugt73b3- 2. Interestingly, each recessive mutant was resistant to methyl viologen (paraquat), an herbicide thought to cause oxidative stress. Our results suggest thatUGTs play an important role in the glycosylation pathways when responding to oxidative stress.  相似文献   

2.
Glycosyltransferases (GTs) play an important role in modulating solubility, stability, bioavailability, and bioactivity of secondary metabolites, such as flavonoids. In Arabidopsis thaliana, at least 120 family 1 uridine diphosphate (UDP)-glycosyltransferases (UGTs) have been predicted. However, little is known about their substrates or their physiological roles in planta. To define the role of UGT73B2 in planta, we first characterized its expression pattern using transgenic Arabidopsis plants carrying the cis-elements of UGT73B2 fused to the GUS reporter. During vegetative phase, its expression was high in embryonic and postembryonic roots, where it may play a physiological role in the glycosylation of flavonoids. Loss of function of UGT73B2 alone or in conjunction with its closest homologs, UGT73B1 and UGT73B3, confers greater tolerance to oxidative stress, whereas overexpression of UGT73B2 increases sensitivity to oxidative stress. In addition, growth phenotypes of mutant and transgenic seedlings correlate well with ROS levels in planta. Our results suggest that the glycosylation of flavonoids by UGT73B2—and/or its closest homologs—modulate the response of plants to oxidative stress.  相似文献   

3.
4.
The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response.  相似文献   

5.
Uridine diphosphate‐glucosyltransferases (UGTs) maintain abscisic acid (ABA) homeostasis in Arabidopsis thaliana by converting ABA to abscisic acid‐glucose ester (ABA‐GE). UGT71C5 plays an important role in the generation of ABA‐GE. Abscisic acid receptors are crucial upstream components of the ABA signaling pathway, but how UGTs and ABA receptors function together to modulate ABA levels is unknown. Here, we demonstrated that the ABA receptors RCAR12/13 and UGT71C5 maintain ABA homeostasis in Arabidopsis following rehydration under drought stress. Biochemical analyses show that UGT71C5 directly interacted with RCAR8/12/13 in yeast cells, and the interactions between UGT71C5 and RCAR12/13 were enhanced by ABA treatment. Enzyme activity analysis showed that ABA‐GE contents were significantly elevated in the presence of RCAR12 or RCAR13, suggesting that these ABA receptors enhance the activity of UGT71C5. Determination of the content of ABA and ABA‐GE in Arabidopsis following rehydration under drought stress revealed that ABA‐GE contents were significantly higher in Arabidopsis plants overexpressing RCAR12 and RCAR13 than in non‐transformed plants and plants overexpressing RCAR11 following rehydration under drought stress. These observations suggest that RCAR12 and RCAR13 enhance the activity of UGT71C5 to glycosylate excess ABA into ABA‐GE following rehydration under drought stress, representing a rapid mechanism for regulating plant growth and development.  相似文献   

6.
The Arabidopsis type 1 UDP-glucose-dependent glucosyltransferase UGT72B1 is highly active in conjugating the persistent pollutants 3,4-dichloroaniline (DCA) and 2,4,5-trichlorophenol (TCP). To determine its importance in detoxifying xenobiotics in planta, mutant plants where the respective gene has been disrupted by T-DNA insertion have been characterized. Extracts from the knockout ugt72B1 plants showed radically reduced conjugating activity towards DCA and TCP and the absence of immunodetectable UGT72B1 protein. In contrast, activities towards phenolic natural products were unaffected. When aseptic root cultures were fed [14C]-DCA, compared with wild types, the ugt72B1 plants showed a reduced rate of uptake of the xenobiotic and very little metabolism to soluble DCA-glucose or associated polar conjugates. Instead, the knockouts accumulated non-extractable radioactive residues, most probably associated with lignification. When the feeding studies were carried out with [14C]-TCP, rates and routes of metabolism were identical in the wild type and knockouts, with TCP-glucoside a major product in both cases. Similar differential effects on the metabolism of DCA and TCP were obtained in whole plant studies with wild type and ugt72B1 mutants, demonstrating that while UGT72B1 had a central role in metabolizing chloroanilines in Arabidopsis, additional UGTs could compensate for the conjugation of TCP in the knockout. TCP was equally toxic to wild type and ugt72B1 plants, while surprisingly, the knockouts were less sensitive to DCA. From this it was concluded that the glucosylation of DCA may not be as effective in xenobiotic detoxification as bound-residue formation.  相似文献   

7.
Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst‐AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T‐DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst‐AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)induced genes whose pathogen‐induced expression is co‐regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan‐derived SM accumulation after Pst‐AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS‐reactive SMs during the HR to Pst‐AvrRpm1, and that decreased resistance to Pst‐AvrRpm1 in ugt mutants is tightly linked to redox perturbation.  相似文献   

8.
Cytokinins are a class of phytohormones that play a crucial role in plant growth and development. The gene UGT76C2 encoding cytokinin N-glucosyltransferase of Arabidopsis thaliana has been previously identified. To determine the in planta role of UGT76C2 in cytokinin metabolism and response, we analyzed the phenotypes of its loss-of-function mutant (ugt76c2) and its overexpressors. The accumulation level of the cytokinin N-glucosides was significantly decreased in ugt76c2, but substantially increased in UGT76C2 overexpressors compared with the wild type. When treated with exogenously applied cytokinin, ugt76c2 showed more sensitivity and UGT76C2 overexpressors showed less sensitivity to cytokinin in primary root elongation, lateral root formation, Chl retention and anthocyanin accumulation. Under normal growth conditions ugt76c2 had smaller seeds than the wild type, with accompanying lowered levels of active and N-glucosylated cytokinin forms. The expression levels of cytokinin-related genes such as AHK2, AHK3, ARR1, IPT5 and CKX3 were changed in ugt76c2, suggesting homeostatic control of cytokinin activity. Studies of spatiotemporal expression patterns showed that UGT76C2 was expressed at a relatively higher level in the seedling and developing seed. In their entirety, our data, based mainly on this comparison and opposite phenotypes of knockout and overexpressors, strongly suggest that UGT76C2 is involved in cytokinin homeostasis and cytokinin response in planta through cytokinin N-glucosylation.  相似文献   

9.
10.
Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP-glucose:thiohydroximate S-glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low Km values for phenylacetothiohydroximic acid (approximately 6 microm) and UDP-glucose (approximately 50 microm) strongly suggest that thiohydroximates are in vivo substrates of UGT74B1. Insertional loss-of-function ugt74b1 mutants exhibit significantly decreased, but not abolished, glucosinolate accumulation. In addition, ugt74b1 mutants display phenotypes reminiscent of auxin overproduction, such as epinastic cotyledons, elongated hypocotyls in light-grown plants, excess adventitious rooting and incomplete leaf vascularization. Indeed, during early plant development, mutant ugt74b1 seedlings accumulate nearly threefold more indole-3-acetic acid than the wild type. Other phenotypes, however, such as chlorosis along the leaf veins, are likely caused by thiohydroximate toxicity. Analysis of UGT74B1 promoter activity during plant development reveals expression patterns consistent with glucosinolate metabolism and induction by auxin treatment. The results are discussed in the context of known mutations in glucosinolate pathway genes and their effects on auxin homeostasis. Taken together, our work provides complementary in vitro and in vivo evidence for a primary role of UGT74B1 in glucosinolate biosynthesis.  相似文献   

11.
12.
13.
Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.  相似文献   

14.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

15.
The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.  相似文献   

16.
UGT76C2是负责细胞分裂素N-糖基化修饰的糖基转移酶,该基因对于维持植物体内细胞分裂素动态平衡有重要作用。为了进一步研究UGT76C2酶蛋白结构与催化活性的关系,本文采用定点突变方法,将UGT76C2的N端第31位的保守亮氨酸替换为组氨酸。结果发现,突变型UGT76C2在离体实验中完全丧失了对细胞分裂素的糖基化修饰活性,该突变基因的过表达转基因植物出现与UGT76C2突变体类似的表型,转基因植物体内的两类主要细胞分裂素的N-糖苷含量显著降低。实验结果证明了UGT76C2 N端亮氨酸残基对于糖基化修饰活性的重要性。  相似文献   

17.
The plant family 1 UDP‐glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR‐Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE‐binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP‐rhamnose to cyanidin and cyanidin 3‐O‐glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.  相似文献   

18.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

19.
Ko JH  Kim BG  Hur HG  Lim Y  Ahn JH 《Plant cell reports》2006,25(7):741-746
Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号