首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Large numbers of monocytes are recruited in the infarcted myocardium. Their cell membranes contain cholesterol-rich microdomains called lipids rafts, which participate in numerous signaling cascades. In addition to its cholesterol-lowering effect, pravastatin has several pleiotropic effects and is widely used as secondary prevention treatment after myocardial infarction (MI). The aim of this study was to investigate the effects of pravastatin on the organization of cholesterol within monocyte membrane rafts from patients who had suffered myocardial infarction. Monocytes from healthy donors and acute MI patients were cultured with or without 4 μM pravastatin. Lipid rafts were extracted by Lubrol WX, caveolae and flat rafts were separated using a modified sucrose gradient. Cholesterol level and caveolin-1 expression in lipid rafts were determined. In healthy donors, cholesterol was concentrated in flat rafts (63 ± 3 vs 13 ± 1%, p < 0.001). While monocytes from MI patients presented similar cholesterol distribution in both caveolae and flat rafts. Cholesterol distribution was higher in flat rafts in healthy donors, compared to MI patients (63 ± 3 vs 41 ± 2%, p < 0.001), with less distribution in caveolae (13 ± 1 vs 34 ± 2%, p < 0.001). Pravastatin reversed the cholesterol distribution in MI patients cells between flat rafts (41 ± 2 vs 66 ± 3%, p < 0.001) and caveolae (34 ± 2 vs 18 ± 1%, p < 0.001). In conclusion, MI redistributes cholesterol from flat rafts to caveolae indicating monocyte membrane reorganization. In vitro pravastatin treatment restored basal conditions in MI monocytes, suggesting another effect of statins.  相似文献   

3.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

4.
Roles of lipid rafts in membrane transport.   总被引:27,自引:0,他引:27  
Cholesterol-sphingolipid microdomains (lipid rafts) are part of the machinery ensuring correct intracellular trafficking of proteins and lipids. The most apparent roles of rafts are in sorting and vesicle formation, although their roles in vesicle movement and cytoskeletal connections as well as in vesicle docking and fusion are coming into focus. New evidence suggests that compositionally distinct lipid microdomains are assembled and may coexist within a given membrane. Important clues have also been uncovered about the mechanisms coupling raft-dependent signaling and endocytic uptake.  相似文献   

5.
Membrane rafts enriched in cholesterol and sphingolipids have been hypothesized to be key mediators of sorting and signaling functions of associated molecules. Apart from a limited number of biophysical studies in living cell membranes, raft-association has been defined by a simple biochemical criterion, namely the ability to partition with detergent-resistant membranes (DRMs). Here we examine the evidence for the specification of internalization mechanisms and endocytic pathways by rafts as defined by this criterion. We have surveyed the endocytic trafficking of a variety of molecules such as lipids, toxins, glycosylphosphatidylinositol (GPI)-anchored proteins, and DRM-associated transmembrane proteins.  相似文献   

6.
High-affinity IgE receptor FcepsilonRI is key molecule in the IgE-mediated allergic reactions. Epigallocatechin-3-gallate (EGCG) has a suppressive effect of the expression of the FcepsilonRI. We show here that EGCG highly associates with plasma membrane microdomains, lipid rafts. The disruption of these lipid rafts caused a reduction of the amount of raft-associated EGCG and the FcepsilonRI -suppressive effect of EGCG. These results suggest that the interaction between EGCG and the lipid rafts is important for EGCG's ability to downregulate FcepsilonRI expression.  相似文献   

7.
Large numbers of monocytes are recruited in the infarcted myocardium. Their cell membranes contain cholesterol-rich microdomains called lipids rafts, which participate in numerous signaling cascades. In addition to its cholesterol-lowering effect, pravastatin has several pleiotropic effects and is widely used as secondary prevention treatment after myocardial infarction (MI). The aim of this study was to investigate the effects of pravastatin on the organization of cholesterol within monocyte membrane rafts from patients who had suffered myocardial infarction. Monocytes from healthy donors and acute MI patients were cultured with or without 4μM pravastatin. Lipid rafts were extracted by Lubrol WX, caveolae and flat rafts were separated using a modified sucrose gradient. Cholesterol level and caveolin-1 expression in lipid rafts were determined. In healthy donors, cholesterol was concentrated in flat rafts (63±3 vs 13±1%, p<0.001). While monocytes from MI patients presented similar cholesterol distribution in both caveolae and flat rafts. Cholesterol distribution was higher in flat rafts in healthy donors, compared to MI patients (63±3 vs 41±2%, p<0.001), with less distribution in caveolae (13±1 vs 34±2%, p<0.001). Pravastatin reversed the cholesterol distribution in MI patients cells between flat rafts (41±2 vs 66±3%, p<0.001) and caveolae (34±2 vs 18±1%, p<0.001). In conclusion, MI redistributes cholesterol from flat rafts to caveolae indicating monocyte membrane reorganization. In vitro pravastatin treatment restored basal conditions in MI monocytes, suggesting another effect of statins.  相似文献   

8.
Say YH  Hooper NM 《Proteomics》2007,7(7):1059-1064
Subcellular fractionation is central to a range of cell biological, biochemical and proteomic studies. Purification of nuclear-enriched fractions is critical for studies on nuclear structure and function. Here we show that detergent-based nuclear isolation methods cause the redistribution of proteins associated with plasma membrane lipid rafts into nuclear fractions. The glycosyl-phosphatidylinositol (GPI)-anchored prion protein (PrP(C)) and a GPI-anchored construct of angiotensin converting enzyme (GPI-ACE), as well as the lipid raft markers flotillin-1 and -2, were present in the nuclear fractions derived using three different subcellular fractionation protocols. Incubation of intact cells with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves GPI-anchored proteins from the cell surface, significantly reduced the amount of PrP(C) and GPI-ACE in the nuclear fraction. Buoyant sucrose density gradient centrifugation in the presence of Triton X-100 of the nuclear fraction resulted in a significant proportion of the GPI-anchored proteins being recovered in the low density lipid raft fractions. These data indicate that the nuclear fraction isolated using such subcellular fractionation protocols is contaminated with components of plasma membrane lipid rafts and raises questions as to the integrity of the nuclear fraction isolated by such protocols for use in detailed cell biological studies and proteomics analysis.  相似文献   

9.
Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-β-cyclodextrin–mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.  相似文献   

10.
The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH(2) terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 mug/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.  相似文献   

11.
Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes.We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir–Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.  相似文献   

12.
Externalization of phosphatidylserine (PS) takes place in apoptotic cells as well as in viable cells under certain circumstances. Recent studies showed that externalized PS is localized at the lipid raft in viable activated immune cells. We found that lipid rafts and PS existed in a mutually exclusive manner in apoptotic cells. The number of PS-exposing apoptotic cells decreased when lipid rafts were disrupted. BCtheta;, which binds selectively to cholesterol in a cholesterol-rich region, did not effectively recognize lipid rafts of apoptotic cells. Lipid rafts rich in GM1 were successfully prepared from apoptotic cells, but the lipid raft protein LAT was not enriched in the preparation. Furthermore, the amount of PS and phosphatidylethanolamine but not of cholesterol in lipid rafts appeared to change after induction of apoptosis. These results suggest that lipid rafts are structurally modified during apoptosis and, despite being localized differently from PS, are involved in the externalization of PS.  相似文献   

13.
TRAIL is a member of the tumor necrosis factor family that selectively induces cancer cell apoptosis. However, gastric cancer cells are insensitive to TRAIL. Our and others studies showed that the inhibition of EGFR pathway activation could increase the sensitivity of TRAIL in cancer cells. But the detailed mechanism is not fully understood. In the present study, compared with TRAIL or cetuximab (an anti-EGFR monoclonal antibody) alone, treatment with the TRAIL/cetuximab combination significantly promoted death receptor 4 (DR4) clustering as well as the translocation of both DR4 and Fas-associated death domain-containing protein (FADD) into lipid rafts. This in turn resulted in caspase-8 cleavage and the formation of the death-inducing signaling complex (DISC) in these lipid rafts. Cholesterol-depletion with methyl-β-cyclodextrin partially prevented DR4 clustering and DISC formation, and thus partially reversed apoptosis induced by the TRAIL/cetuximab dual treatment. These results indicate that cetuximab increases TRAIL-induced gastric cancer cell apoptosis at least partially through the promotion of DISC formation in lipid rafts.  相似文献   

14.
Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.  相似文献   

15.
16.
Li N  Mak A  Richards DP  Naber C  Keller BO  Li L  Shaw AR 《Proteomics》2003,3(4):536-548
Lipid rafts are membrane microdomains of unique lipid composition that segregate proteins with poorly understood consequences for membrane organization. Identification of raft associated proteins could therefore provide novel insight into raft-dependent functions. Monocytes process antigens for presentation to T cells by ingesting pathogens into calcium-dependent plasma membrane invaginations called "phagosomes" which develop by sequential fusion with the endoplasmic reticulum, early and late endosomes. We investigated the protein composition of Triton X-100 insoluble low density membranes of the monocyte cell-line THP-1 by matrix-assisted laser desorption/ionization-time of flight and tandem mass spectrometry. The ganglioside GM1 colocalized on the plasma membrane with the raft markers flotillin 1 and 2, which were enriched in low buoyant density fractions containing 52 identifiable proteins, 28 of which have not been reported in rafts, and nine of which are associated with the endoplasmic reticulum (ER). Remarkably, 27 of the 52 proteins are components of phagosomes, including the ER protein calnexin which we demonstrate is phosphorylated on serine 562, a switch controlling calcium homeostasis. The presence of the early and late endosome trafficking proteins Rab-1, and Rab-7 together with the late endosome protein LIMPII, indicate lipid rafts are present throughout endosome maturation. Identification of vacuolar ATP synthase, and synaptosomal-associated protein-23, proteins implicated in membrane fusion, together with the cytoskeletal proteins actin, alpha-actinin, and vimentin, and Rac 1, 2, and 3, regulators of cytoskeletal assembly, indicate monocyte lipid rafts contain the machinery to direct vesicular fusion and actin based vesicular migration throughout phagosome development.  相似文献   

17.
Chen X  Morris R  Lawrence MJ  Quinn PJ 《Biochimie》2007,89(2):192-196
The action of detergents in the isolation of detergent-resistant membrane fractions from rat brain is reported. Triton X-100 treatment of whole rat brain homogenate at 4 degrees C produced detergent-resistant membranes with a density of 1.07g/ml compared with Brij96 where the density of the membrane was only 1.05g/ml. The DRM fractions isolated using Triton X-100 are considerably heavier than those isolated from homogenates treated with Brij96. The major polar lipid composition of DRMs derived from Brij96 treated homogenates have a higher proportion of aminophospholipids compared with choline phospholipids than Triton X-100 derived DRMs; this may indicate that DRMs from Brij96 treated homogenates are more closely related to the parent membrane in lipid composition. Solubilization by Triton X-100 at higher temperatures resulted in the appearance of a second detergent-resistant membrane fraction distinctly lighter in density than the membrane recovered at density 1.07g/ml. Analysis of phospholipid composition of the brain homogenate during detergent treatment for up to 30min at 37 degrees C showed a decreasing proportion of sphingomyelin. Treatment of homogenates at 37 degrees C appears to activate phospholipases/sphingomyelinases that may alter the lipid content of isolated DRMs. The presence of K+/Mg2+ with Brij96 treatment results in DRM fractions with significantly thicker bilayers and of larger vesicle diameter than DRMs isolated from either Triton X-100 or Brij96 treated homogenates in the absence of cations.  相似文献   

18.
The neuronal glycine transporter GLYT2 is a plasma membrane protein that removes the neurotransmitter glycine from the synaptic cleft, thereby aiding the pre-synaptic terminal reloading and the termination of the glycinergic signal. Missense mutations in the gene encoding GLYT2 (SLC6A5) cause hyperekplexia in humans. The activity of GLYT2 seems to be highly regulated. In this report, we demonstrate that GLYT2 is associated with membrane rafts in the plasma membrane of brainstem terminals and neurons. The transporter is localized to Triton X-100-insoluble light synaptosomal membranes together with flotillin-1, a marker protein for membrane rafts, in a methyl-β-cyclodextrin (MβCD)-sensitive manner. In brainstem primary neurons, the GLYT2 punctuate pattern visualized by confocal microscopy was modified by cholesterol depletion with MβCD, unlike other non-raft neuronal markers. GLYT2-associated gold particles were observed by electron microscopy on purified rafts from brainstem synaptosomes. Furthermore, either in brainstem terminals and cultured neurons, the pharmacological reduction of the levels of raft components, cholesterol and sphingomyelin, impairs both the association of GLYT2 with membrane rafts and its transport activity. Thus, GLYT2 may require membrane raft location for optimal function, and therefore the lipid environment may constitute a new mechanism to modulate GLYT2.  相似文献   

19.
20.
We report for the first time the detection of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Cholera toxin β (CTβ), which binds to the raft-enriched ganglioside GM1, was selected to label rafts. In a novel application a Qdot reagent was used to detect CTβ labeling. This is the first reported use of nanocrystals in mammalian embryo imaging. Comparative membrane labeling with CTβ and lipophilic membrane dyes containing saturated or unsaturated aliphatic tails showed that the detection of GM1 in mouse oocytes and embryo membranes was consistent with the identification of cholesterol- and sphingolipid-enriched rafts in the cell membrane. Distribution of the GM1 was compared with the known distribution of non-raft membrane components, and disruption of membrane rafts with detergents confirmed the cholesterol dependence of GM1 on lipid raft labeling. Complementary functional studies showed that cholesterol depletion using methyl-β-cyclodextrin inhibited preimplantation development in culture. Our results show that the membranes of the mouse oocyte and zygote are rich in lipid rafts, with heterogeneous and stage-dependent distribution. In dividing embryos, the rafts were clearly associated with the cleavage furrow. At the morula stage, rafts were also apically enriched in each blastomere. In blastocysts, rafts were detectable in the trophectoderm layer, but could not be detected in the inner cell mass without prior fixation and permeabilization of the embryo. Lipid rafts and their associated proteins are, therefore, spatio-temporally positioned to a play a critical role in preimplantation developmental events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号