首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemetz R  Gross GG 《Phytochemistry》2003,62(3):301-306
A new enzyme has been isolated from leaves of the weed Tellima grandiflora (fringe cups, Saxifragaceae) that catalyzed the O(2)-dependent oxidation of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose to tellimagrandin II, the first intermediate in the (4)C(1)-glucose derived series of ellagitannins. CD-spectra revealed that the 4,6-O-HHDP-residue of the in vitro product had the (S)-stereoconfiguration characteristic of tellimagrandin II from natural sources. The enzyme, for which a M(r) of ca. 60,000 was determined, was purified to apparent homogeneity. It had a pH-optimum at pH 5.0, an isoelectric point at pH 6.3 and was most stable at pH 4.2. Inhibition studies suggested that this new enzyme, for which the systematic name 'pentagalloylglucose: O(2) oxidoreductase' is proposed, belongs to the vast group of laccase-type phenol oxidases (EC 1.10.3.2).  相似文献   

2.
First evidence for the in vitro synthesis of a dimeric ellagitannin has been obtained with cell-free extracts from the weed Tellima grandiflora (fringe cups, Saxifragaceae). Partially purified enzyme preparations from leaves of this plant catalyzed the oxidation of 1,2,3,4,6-pentagalloyl-beta-D-glucose to the monomeric ellagitannin, tellimagrandin II, followed by oxidative coupling of two units of this intermediate to yield a dimeric derivative. Chemical degradation, MALDI-TOF mass spectrometry, 1H and 13C nuclear magnetic resonance, and CD spectroscopy were employed to identify this enzyme reaction product as cornusiin E which is characterized by a (S)-valoneoyl bridge between glucose-positions 2, 4' and 6'. This result was supported by comparison with data obtained for cornusiin E that had been isolated from leaves of intact T. grandiflora plants. No indication for the earlier proposed existence of rugosin D (an isomer with a 1,4',6'-bound valoneoyl unit) in T. grandiflora has been obtained in this investigation.  相似文献   

3.
The oxidation of o-phenylenediamine catalyzed in anhydrous organic solvents by surfactant-laccase complex was investigated. The complex was prepared by utilizing a novel preparation technique in water-in-oil (W/O) emulsions. The surfactant-laccase complex effectively catalyzed the oxidation reaction in various dry organic solvents, while laccase, lyophilized from an aqueous buffer solution in which its activity was optimized, exhibited no catalytic activity in nonaqueous media. To optimize the preparation and reaction conditions for the surfactant-enzyme complexes, we examined the effects of pH in the water pool of W/O emulsions, the concentration of enzyme and surfactant at the preparation stage, and the nature of organic solvents at the reaction stage on the laccase activity in organic media. Surfactant-laccase complex showed a strong pH-dependent catalytic activity in organic media. Its optimum activity was obtained when the complex was prepared at a pH of about 3. Interestingly, native laccase in an aqueous buffer solution exhibited an optimum activity at the same pH of 3. The optimum preparation conditions of surfactant-laccase complex were [laccase] = 0.8 mg/mL and [surfactant] = 10 mM, and the complex showed the highest catalytic activity in toluene among nine anhydrous organic solvents. The effect of a cosolubilized mediator (1-hydroxybenzotriazole (HBT)) on the reaction was also investigated. The addition of HBT at the preparation stage of the enzyme complex did not accelerate the catalytic reaction because HBT was converted to an inactive benzotriazole (BT) by laccase. However, the addition of HBT at the reaction stage enhanced the catalytic performance by a factor of five compared to that without HBT.  相似文献   

4.
The specific activities of crude and purified Coprinus cinereus laccase preparations could be enhanced by a factor of 10-12 by activation with copper ions. The copper to protein contents of purified non-activated laccase were 2.3 ± 0.1 compared to 3.3 ± 0.1 in purified activated laccase indicating that only a fraction of the laccase can be activated. Purified laccase not activated with copper ions shows in isoelectric focusing four bands in order of decreasing pI in a ratio 1/5/3/1 where only bands I and II had laccase activity. Purified activated laccase showed only three bands (I, II and III) in the ratio 5/4/1 all with some laccase activity. The pH profile of the activity for activated and non-activated laccase showed identical behavior indicating that the active forms were the same. The change in UV-Vis around 330 nm following the depletion and reconstitution of the enzyme combined with activity measurements supports the reversibility of the selective removal and insertion of copper ions at the type 2 site. The circular dichroism spectrum of activated purified laccase has characteristic changes around 350 nm relative to non-activated laccase indicative of changes at the type 2/type 3 sites. The difference between the electron paramagnetic resonance spectra of non-activated and activated C. cinereus laccase indicates that a fraction of the non-activated purified laccase contained a copper(II) signal with a coupling constant between a type 1 and a type 2 copper(II). This electron paramagnetic resonance signal could be explained by an induced asymmetry in the type 3 site due to a missing type 2 copper ion.  相似文献   

5.
O(2) was electroreduced to water at 0.6 V (SHE) near neutral pH on the "wired" Pleurotus ostreatus laccase cathode. We previously reported high-current density (5 mA cm(-2)), four-electron electroreduction of O(2) to water on a "wired" Coriolus hirsutus laccase electrode at +0.7 V (SHE) in pH 5 in citrate buffer. Since the enzyme was inhibited by chloride and because its activity declined steeply when the pH was raised to neutral, the rate of O(2) electroreduction in a physiological buffer solution was only approximately 1% of that at pH 5 in absence of chloride. Here we show that substitution of the C. hirsutus laccase by laccase from P. ostreatus allows the upward extension of the pH range of O(2) electroreduction. The current density of the electrode made with laccase from P. ostreatus in pH 7 citrate buffer was approximately 100 microA cm(-2) and at pH 7 and in phosphate buffered NaCl (PBS, 20 mM phosphate, 0.1 M NaCl) it still retained 6% of its maximal (1 mA cm(-2)) current density at pH 5 in citrate buffer. The electrocatalyst consisted of the crosslinked P. ostreatus laccase and the electron conducting redox polymer PVI-Os(dmebpy)(tpy)(2+/3+) [PVI=poly(N-vinyl imidazole) with about 1/5th of the rings complexed with (Os-dmebpy-tpy)(2+/3+); dmebpy=4,4'-dimethyl-2,2'-bipyridine; tpy=2,2',6',2"-terpyridine].  相似文献   

6.
The properties of two-domain laccase of Streptomyces anulatus (SaSL) and its role in transformation of humic acids (HA) from chernozem, sod-podzolic soil and peat at alkaline pH values were studied. The SaSL was cloned, expressed in E. coli and obtained in an electrophoretically homogeneous state. SaSL is an oligomeric protein with a molecular weight of 235-300 kDa and six or eight subunits in the molecule. The molecular weight of the subunit is 37.7 kDa. Its catalytic properties are similar to those of the previously described two-domain laccase. The enzyme catalyzed oxidation of electron donors (K4[Fe(CN)6], ABTS) at acidic pH and phenolic substrates (2-methoxyphenol, 2,6-dimethixyphenol) at alkaline pH values. The efficiency of catalysis was higher in the case of electron donors than phenolic substrates. The enzyme showed a high thermal stability and was more stable at neutral and alkaline pH values. The enzyme effectively transformed humic acids at alkaline pH values. It was found that polymerization reactions took place during interaction of SaSL with HA, as well as with their high-molecular weight (>80 kDa) and low-molecular weight (<5 kDa) fractions. Our results suggest a possible involvement of the two-domaim laccases in humification processes in alkaline soils.  相似文献   

7.
Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions.  相似文献   

8.
An enzyme showing alkaliphilic laccase activity was purified from the culture supernatant of Myrothecium verrucaria 24G-4. The enzyme was highly stable under alkaline conditions, showed an optimum reaction pH of 9.0 for 4-aminoantipyrine/phenol coupling, and decolorized synthetic dyes under alkaline conditions. It showed structural and catalytic similarities with bilirubin oxidase, but preferably oxidized phenolic compounds. The enzyme catalyzed veratryl alcohol oxidation at pH 9.0 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a mediator, suggesting that the laccase mediator system functioned well under alkaline conditions.  相似文献   

9.
Enzymology of gallotannin and ellagitannin biosynthesis   总被引:2,自引:0,他引:2  
Niemetz R  Gross GG 《Phytochemistry》2005,66(17):2001-2011
Gallotannins and ellagitannins, the two subclasses of hydrolyzable tannins, are derivatives of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose. Enzyme studies with extracts from oak leaves (Quercus robur, syn. Quercus pedunculata; Quercus rubra) and from staghorn sumac (Rhus typhina) revealed that this pivotal intermediate is synthesized from beta-glucogallin (1-O-galloyl-beta-D-glucopyranose) by a series of strictly position-specific galloylation steps, affording so-called 'simple' gallotannins, i.e., mono- to pentagallyoylglucose esters. Besides its role as starter molecule, beta-glucogallin was also recognized as the principal energy-rich acyl donor required in these transformations. Subsequent pathways to 'complex' gallotannins have recently been elucidated by the isolation of five different enzymes from sumac leaves that were purified to apparent homogeneity. They catalyzed the beta-glucogallin-dependent galloylation of pentagallyoylglucose to a variety of hexa- and heptagalloylglucoses, plus several not yet characterized higher substituted analogous galloylglucoses. With respect to the biosynthesis of ellagitannins, postulates that had been formulated already decades ago were proven by the purification of a new laccase-like phenol oxidase from leaves of fringe cups (Tellima grandiflora) that regio- and stereospecifically oxidized pentagallyoylglucose to the monomeric ellagitannin, tellimagrandin II. This compound was further oxidized by a similar but different laccase-like oxidase to yield a dimeric ellagitannin, cornusiin E.  相似文献   

10.
Previous work has shown that the white rot fungus Coriolopsis rigida degraded wheat straw lignin and both the aliphatic and aromatic fractions of crude oil from contaminated soils. To better understand these processes, we studied the enzymatic composition of the ligninolytic system of this fungus. Since laccase was the sole ligninolytic enzyme found, we paid attention to the oxidative capabilities of this enzyme that would allow its participation in the mentioned degradative processes. We purified two laccase isoenzymes to electrophoretic homogeneity from copper-induced cultures. Both enzymes are monomeric proteins, with the same molecular mass (66 kDa), isoelectric point (3.9), N-linked carbohydrate content (9%), pH optima of 3.0 on 2,6-dimethoxyphenol (DMP) and 2.5 on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), absorption spectrum, and N-terminal amino acid sequence. They oxidized 4-anisidine and numerous phenolic compounds, including methoxyphenols, hydroquinones, and lignin-derived aldehydes and acids. Phenol red, an unusual substrate of laccase due to its high redox potential, was also oxidized. The highest enzyme affinity and efficiency were obtained with ABTS and, among phenolic compounds, with 2,6-dimethoxyhydroquinone (DBQH(2)). The presence of ABTS in the laccase reaction expanded the substrate range of C. rigida laccases to nonphenolic compounds and that of MBQH(2) extended the reactions catalyzed by these enzymes to the production of H(2)O(2), the oxidation of Mn(2+), the reduction of Fe(3+), and the generation of hydroxyl radicals. These results confirm the participation of laccase in the production of oxygen free radicals, suggesting novel uses of this enzyme in degradative processes.  相似文献   

11.
We have measured the pH dependence of the kinetics of CO2 hydration catalyzed by carbonic anhydrase III from the skeletal muscle of the cat. Two methods were used: an initial velocity study in which the change in absorbance of a pH indicator was measured in a stopped flow spectrophotometer, and an equilibrium study in which the rate of exchange of 18O between CO2 and H2O was measured with a mass spectrometer. We have found that the steady state constants kCO2 cat and KCO2 m are independent of pH within experimental error in the range of pH 5.0 to 8.5; the rate of release from the enzyme of the oxygen abstracted from substrate HCO-3 in the dehydration is also independent of pH in this range. This behavior is very different from that observed for carbonic anhydrase II for which kCO2 cat and the rate of release of substrate oxygen are very pH-dependent. The rate of interconversion of CO2 and HCO-3 at equilibrium catalyzed by carbonic anhydrase III is not altered when the solvent is changed from H2O to 98% D2O and 2% H2O. Thus, the interconversion probably proceeds without proton transfer in its rate-limiting steps, similar to isozymes I and II.  相似文献   

12.
Inositol-polyphosphate 3-phosphatase catalyzes the hydrolysis of the 3-position phosphate bond of inositol 1,3-bisphosphate (Ins(1,3)P2) to form inositol 1-monophosphate and inorganic phosphate (Bansal, V.S., Inhorn, R.C., and Majerus, P.W. (1987) J. Biol. Chem. 262, 9444-9447). Phosphatidylinositol 3-phosphatase catalyzes the analogous reaction utilizing phosphatidylinositol 3-phosphate (PtdIns(3)P) as substrate to form phosphatidylinositol and inorganic phosphate (Lips, D.L., and Majerus, P.W. (1989) J. Biol. Chem. 264, 19911-19915). We now demonstrate that these enzyme activities are identical. Two forms of the enzyme, designated Type I and II 3-phosphatases, were isolated from rat brain. The Type I 3-phosphatase consisted of a protein doublet that migrated at a relative Mr of 65,000 upon sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The Mr of this isoform upon size-exclusion chromatography was 110,000, suggesting that the native enzyme is a dimer. The Type II enzyme consisted of equal amounts of an Mr = 65,000 doublet and an Mr = 78,000 band upon SDS-polyacrylamide gel electrophoresis. This isoform displayed an Mr upon size-exclusion chromatography of 147,000, indicating that it is a heterodimer. The Type II 3-phosphatase catalyzed the hydrolysis of Ins(1,3)P2 with a catalytic efficiency of one-nineteenth of that measured for the Type I enzyme, whereas PtdIns(3)P was hydrolyzed by the Type II 3-phosphatase at three times the rate measured for the Type I 3-phosphatase. The Mr = 65,000 subunits of the two forms of 3-phosphatase appear to be the same based on co-migration on SDS-polyacrylamide gels and peptide maps generated with Staphylococcus aureus protease V8 and trypsin. The peptide map of the Mr = 78,000 subunit was different from that of the Mr = 65,000 subunits. Thus, we propose that the differing relative specificities of the Type I and II 3-phosphatases for Ins(1,3)P2 and PtdIns(3)P are due to the presence of the Mr = 78,000 subunit of the Type II enzyme.  相似文献   

13.
A protocatechuate 3,4-dioxygenase with exceptionally sharp spectral features and a new subunit composition has been purified and crystallized from the Gram-positive organism Brevibacterium fuscum. EPR spectra show that the catalytically essential Fe3+ resides in a site of almost the maximal rhombicity (E/D = 0.333 +/- 0.003). The spectral line widths (1.4 milliTesla at g = 9.67) are the smallest reported for any biological high spin Fe3+ complex and suggest that the enzyme is quite homogeneous in the vicinity of the Fe site. The same conclusion is drawn from M?ssbauer spectra measured with enzyme prepared from cells cultured in 57Fe-enriched media as well as from resonance Raman and optical spectra. In contrast, EPR and M?ssbauer spectra of the anaerobic complex with protocatechuate (PCA) are complex and demonstrate that multiple species with markedly different electronic symmetries and both positive and negative zero field splittings are present. The Mr = 315,000 enzyme has a composition of (alpha beta Fe)5 (Mr(alpha) = 22,500; Mr (beta) = 40,000). Amino acid analysis shows that neither subunit contains cysteine, thus eliminating this amino acid as a possible Fe ligand. The general features of the structure, spectra, and catalyzed reaction of this enzyme appear to be very similar to those of protocatechuate 3,4-dioxygenase isolated from Gram-negative organisms. However, the kinetic parameters (Km(PCA) = 125 microM, Km(O2) = 800 microM, turnover number = 25,000 min-1 at infinite PCA and O2 concentrations) are 5- to 50-fold higher. The sharp spectra and the kinetic properties facilitate mechanistic studies described in this and the following reports.  相似文献   

14.
Summary Colour removal from phenplic industrial effluents by phenol oxidase enzymes and white-rot fungi was compared. Soluble laccase and horseradish peroxidase (HRP) removed colour from pulp mill (E), cotton mill hydroxide (OH) and cotton mill sulphide (S) effluents, but rapid and irreversible enzyme inactivation took place. Entrapment of laccase in alginate beads improved decolorization by factors of 3.5 (OH) and 2 (E); entrapment of HRP improved decolorization by 36 (OH), 20 (E) and 9 (S). Beads were unsuitable for continuous use because the enzymes were rapidly released into solution. Co-polymerization of laccase or HRP with L-tyrosine gave insoluble polymers with enzyme activity. Entrapment of the co-polymers in gel beads further increased the efficiency of decolorization of E by 28 (laccase) and by 132 (HRP) compared with soluble enzymes. Maximum decolorization of all three effluents by batch cultures of Coriolus versicolor (70%–80% in 8 days) was greater than the maximum enzymic decolorization (48% of OH in 3 days by entrapped laccase). Soluble laccase (222 units ml–1) precipitated 1.2 g l–1 phenol from artificial coal conversion effluent at pH 6.0 and the rate of precipitation and enzyme inactivation was faster at pH 6.0 than at pH 8.5.Offprint requests to: R. G. Burns  相似文献   

15.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45°C both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70°C and had half-lives of 24 and 12 h at 40 and 50°C, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   

16.
C K Tu  D N Silverman 《Biochemistry》1985,24(21):5881-5887
We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme.  相似文献   

17.
The pigmented ascomycete Hortaea acidophila is able to grow at a pH as low as 0.6 and produces laccases that are involved in melanin synthesis. We now present data on an extracellular and an intracellular laccase which exhibit a high stability at low pH. Furthermore, the optimum for enzyme acitivity is extraordinarily low with pH 1.5 for the intracellular laccase with 2,6-dimethoxyphenol (DMOP) as substrate. Two complete laccase gene sequences of H. acidophila were amplified by inverse polymerase chain reaction (PCR). Whereas the deduced protein laccase I contains an predicted N-terminal signal sequence for protein export, laccase II does not and thus may represent the intracellular laccase. The acidophilic character of both laccases seems to be reflected in their primary structure.  相似文献   

18.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

19.
20.
Resonance Raman investigations on compound II of native, diacetyldeuteroheme-, and manganese-substituted horseradish peroxidase (isozyme C) revealed that the metal-oxygen linkage in the compound differed from one another in its bond strength and/or structure. Fe(IV) = O stretching frequency for compound II of native enzyme was pH sensitive, giving the Raman line at 772 and 789 cm-1 at pH 7 and 10, respectively. The results confirmed the presence of a hydrogen bond between the oxo-ligand and a nearby amino acid residue (Sitter, A. J., Reczek, C. M., and Terner, J. (1985) J. Biol. Chem. 260, 7515-7522). The Fe(IV) = O stretch for compound II of diacetylheme-enzyme was located at 781 cm-1 at pH 7 which was 9 cm-1 higher than that of native enzyme compound II. At pH 10, however, the Fe(IV) = O stretch was found at 790 cm-1, essentially the same frequency as that of native enzyme compound II. The pK value for the pH transition, 8.5, was also the same as that of native compound II. Unlike in native enzyme, D2O-H2O exchange did not cause a shift of the Fe(IV) = O frequency of diacetylheme-enzyme. Thus, the metal-oxygen bond at pH 7 was stronger in diacetylheme-enzyme due to a weaker hydrogen bonding to the oxo-ligand, while the Fe(IV) = O bond strength became essentially the same between both enzymes at alkaline pH upon disruption of the hydrogen bond. A much lower reactivity of the diacetylheme-enzyme compound II was accounted to be due to the weaker hydrogen bond. Compound II of manganese-substituted enzyme exhibited Mn(IV)-oxygen stretch about 630 cm-1, which was pH insensitive but down-shifted by 18 cm-1 upon the D2O-H2O exchange. The finding indicates that its structure is in Mn(IV)-OH, where the proton is exchangeable with a water proton. These results establish that the structure of native enzyme compound II is Fe(IV) = O but not Fe(IV)-OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号